首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
碳纤维增强α-TCP/TTCP骨水泥的研究   总被引:4,自引:0,他引:4  
制备了经过氧化处理的碳纤维增强磷酸钙骨水泥(α—tricalcium phosphate cement/tetracalcium phosphate,α—TCP/TTCP),初步探讨了碳纤维长径比、含量对硬化体抗压、抗折强度的影响.实验结果表明长径比为375,添加量为0.3wt%时,增强效果最为理想,抗压强度提高了55%(最大为63.46MPa),抗折强度提高近100%(最大为11.95MPa),而掺入量太大及长径比太高,碳纤维因不能均匀分散将限制其性能的发挥.生物学评价实验结果表明碳纤维增强的骨水泥具有良好的生物相容性。  相似文献   

2.
刘琼  刘科元  于晓琦  魏婧 《功能材料》2022,(8):8231-8236
以硅酸盐水泥P.O 42.5为基础材料、短切PAN基碳纤维为增强相制备了分散均匀的碳纤维水泥基复合材料,研究了不同掺杂量(0,0.3%,0.6%和0.9%(质量分数))短切PAN基碳纤维的水泥基复合材料的物相结构、微观形貌、力学性能、耐磨性能和抗碳化性能。结果表明,短切PAN基碳纤维的掺杂加速了水化反应的进行,没有产生新的水化产物,碳纤维在水泥基复合材料中呈三维错落分布,构成网格结构,提高了水化产物之间的结合强度,提高了水泥基复合材料的致密性,从而提高了水泥基复合材料的力学性能、耐磨性能和抗碳化性能。随着短切PAN基碳纤维掺杂量的增加,水泥基复合材料7和28 d的抗压强度和抗折强度均表现出先增大后降低的趋势,而质量损失率和碳化深度则表现出先降低后升高的趋势。当短切PAN基碳纤维的掺杂量为0.6%(质量分数)时,质量损失率达到最小值0.34%,养护7和28 d后,抗压强度达到了最大值69.3和86.4 MPa,抗折强度也达到了最大值11.1和14.1 MPa,而碳化深度达到最低值0.35和2.53 mm。综合分析可知,短切PAN基碳纤维的最佳掺杂量为0.6%(质量分数)。  相似文献   

3.
孙亚颇 《功能材料》2023,(1):1115-1119
以普通硅酸盐水泥P.O 42.5为基体材料,不同掺杂量(0,0.4%,0.8%和1.2%(质量分数))的纳米碳纤维为增强相,制备了纳米碳纤维增韧水泥基复合材料,研究了纳米碳纤维的掺杂量对水泥基复合材料晶体结构、力学性能和耐久性能的影响。结果表明,纳米碳纤维的掺杂在水泥基复合材料中未出现新的水化产物,但加速了水化反应的进行;纳米碳纤维的“连接”作用使水泥基复合材料的孔结构变得致密,裂纹和孔隙减少;随着纳米碳纤维掺杂量的增加,水泥基复合材料的抗压强度和抗折强度先增大后减小,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料28 d的抗压强度和抗折强度均达到了最大值,分别为82.4和13.1MPa;采用单面盐冻法对水泥基复合材料进行抗冻性能测试,发现纳米碳纤维的掺杂改善了水泥基复合材料的抗冻性能,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料在28次冻融循环后单位面积质量损失量最小为0.114 kg/m2。综合力学性能和耐久性能分析可知,纳米碳纤维的最佳掺量为0.8%(质量分数)。  相似文献   

4.
为了探讨聚乙烯醇(PVA)在高性能水泥基材料中的作用机理,试验研究了在不同水胶比(W/B)和聚胶比(P/B)时,聚乙烯醇对抗压强度和抗折强度的影响,并通过红外光谱和X射线衍射分析了聚乙烯醇(PVA)粉体在高性能水泥基材料中的作用机理.试验结果表明:掺入适量的聚乙烯醇(PVA)可以明显提高高性能水泥基材料的强度,存在一个最佳的聚乙烯醇(PVA)掺量;在本试验条件下,在聚胶比(P/B)为2.5%时,强度最高,其抗压强度和抗折强度分别达到113.6MPa和23.0MPa;红外光谱和X射线衍射分析表明,聚乙烯醇(PVA)参与了水泥的水化,形成的化学键增强.  相似文献   

5.
短碳纤维的分散性对CFRC力学性能的影响   总被引:1,自引:2,他引:1  
王闯  王爱玲  张修身 《材料导报》2007,21(5):125-128
碳纤维增强水泥基复合材料(CFRC)是一种新型建筑智能材料,碳纤维在水泥基体中的分散性直接影响着它的力学性能.借助超声波和甲基纤维素(MC)分散剂,实现了短碳纤维在水泥基体中的均匀分散,对所制备的CFRC复合材料的断口形貌作了SEM观察;测试了试件的抗压强度、抗拉强度和抗折强度.结果发现,碳纤维均匀分散时,复合材料的抗压强度提高19%,抗拉强度比不加碳纤维时提高2.2倍,弹性模量提高1.4倍.此外,复合材料的抗弯强度、抗折强度均高于未均匀分散时的强度.  相似文献   

6.
磷酸镁水泥(MPC)凝结硬化速度快,早期强度高,采用MPC作为胶凝材料,有利于在无养护条件下制备出具有高早强特征的超高性能磷酸镁水泥混凝土(UHPMPCC)。研究了钢纤维掺量和长径比等参数对UHPMPCC物理力学性能的影响,分析了UHPMPCC中钢纤维的增强机制和影响规律。结果表明25 mm钢纤维有利于提高早期抗压强度,而13 mm钢纤维更有利于提高长期力学性能;13 mm钢纤维的掺量2.5%(体积分数)时,无养护的UHPMPCC6h抗压强度和抗折强度超过60和25 MPa, 28 d抗压强度和抗折强度超过120和38 MPa。MPC浆体早期呈酸性,使钢纤维表面产生刻蚀,鸟粪石嵌入钢纤维中,增强MPC基体和钢纤维的界面粘结,有助于提高UHPMPCC的抗弯强度。  相似文献   

7.
赵云丽  侯风  崔二江 《功能材料》2023,(12):12136-12141
为了获得优异保温性能和高强度的节能保温砂浆,以普通硅酸盐水泥P.O 42.5作为基质材料,通过在砂浆中添加适量的碳纤维作为增强材料,以此制备了碳纤维建筑节能保温砂浆,研究了碳纤维的掺杂量对保温砂浆的力学性能、收缩率及保温性能的影响,并建立了保温砂浆导热系数和表观密度的关系式。结果表明,随着碳纤维掺杂量的增大,保温砂浆的表观密度先降低后轻微升高,稠度、抗压强度和抗折强度均先升高后降低。在28 d龄期,当碳纤维的掺杂量为0.5%(质量分数)时,保温砂浆中网状结构的致密性最好,抗压强度和抗折强度均达到最大值,分别为46.1和6.8 MPa,其中抗折强度提高了23.64%,改善效果高于抗压强度。随着碳纤维掺杂量的增大,保温砂浆的收缩率持续降低,导热系数先降低后增大,当碳纤维的掺杂量为0.5%(质量分数)时,保温砂浆的导热系数达到最低值为0.0583 W/(m·K),保温性能最佳。通过拟合保温砂浆的导热系数和表观密度发现两者为线性相关,方程的拟合度为98.4%。综合可知,碳纤维的最佳掺杂量为0.5%(质量分数)。  相似文献   

8.
聚乙烯纤维对超高性能混凝土性能的影响   总被引:1,自引:0,他引:1  
黄政宇  李操旺  刘永强 《材料导报》2014,28(20):111-115
高强高模量聚乙烯纤维(PE纤维)是一种被广泛研究应用的新型合成纤维增强材料。系统地研究了不同掺量、不同长径比的PE纤维对超高性能混凝土(UHPC)性能的影响。结果表明PE纤维能显著提高混凝土的抗折强度和抗压强度,在纤维体积掺量为2%的情况下,抗折强度为28MPa,抗压强度为157MPa,较素UHPC分别提高了47.3%和28.1%。PE纤维的掺入大大提高了混凝土的韧性,改变了混凝土脆性破坏的形态,表现为多缝开裂,荷载-挠度全曲线表现为位移硬化。  相似文献   

9.
碳纳米管-碳纤维复合增强体(CNTs-CF)是一种在碳纤维(CF)表面引入碳纳米管(CNTs)构筑而成的新型纤维材料。按照利用CNTs-CF作为跨尺度增强组分对混凝土进行改性的思路,制备出五种CNTs-CF体积掺量(0%、0.1%、0.2%、0.3%和0.4%)的碳纳米管-碳纤维复合改性混凝土(CCMC),测试了CCMC的抗压强度、抗折强度、折压比(抗折强度与抗压强度的比值)及破坏形态等性能指标,进而结合扫描电镜(SEM)图像,分析了CNTs-CF对混凝土基本力学性能的增效机理。结果表明:掺加适量的CNTs-CF有利于混凝土抗压强度和抗折强度的提升,并且CNTs-CF在混凝土基体中的体积掺量存在相对最佳值。与未配置CNTs-CF的普通混凝土相比,当CNTs-CF体积掺量为0.3%时,CCMC的抗压强度提高了8.79%,抗折强度提高了27.76%。在本试验的纤维掺量范围内,CCMC的折压比随CNTs-CF体积掺量的增加呈现出递增趋势,提高幅度为8.47%~19.16%。掺入CNTs-CF后,混凝土的脆性破坏特征有所减弱,在受荷失效时,其仍可保持较好的完整性,坏而不散、裂而不断。CNTs-...  相似文献   

10.
本文采用改进的Hummers法制备了氧化石墨烯(Graphene oxide,GO)悬浮液,通过FTIR、XRD和AFM等测试技术对GO晶体结构和尺寸形态进行了表征,考察了GO掺量和水灰比的变化对GO增强水泥基复合材料力学性能和微观结构的影响。结果表明:GO增强水泥基复合材料抗折抗压强度随GO掺量增加而先提高后降低,且对于抗折强度增强效果远超过抗压强度,当GO掺量为0.03%时,抗折强度达到最大值13.72 MPa;高水灰比条件下掺入GO对水泥胶砂强度的提高更显著;通过SEM对GO增强水泥基复合材料微观结构进行表征,发现GO能够优化水泥水化产物的微观结构形态,细化晶体尺寸,形成更加致密均匀的网络结构,从而改善水泥基复合材料的宏观性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号