首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study on PTFE reinforced with SiO2 was described. It included the manufacturing process of SiO2-reinforced PTFE and the effects of the SiO2 content and size on the properties of the composite material, such as thermal, dielectric, tensile strength and morphology, etc. PTFE/SiO2 composites loaded with two sizes (5 μm or 25 μm SiO2) of filler contents varied from 0–60 wt% were mixed by a high-speed dispersion mixer and made via a two-roll milling machine. Our results showed that the composite filled with 25 μm SiO2 at 60 wt% filler content had the highest modulus, lowest CTE z and acceptable dielectric properties. Composites with different sizes of filler showed a similar trend of decreasing tensile strength and coefficient of thermal expansion (CTE z ), and increasing tensile modulus, water absorption and dielectric properties as the filler content increased. Furthermore, the composites filled with small-size filler showed higher water absorption and dielectric loss properties due to the presence of higher SiO2 surface area. Poor adhesion between filler and matrix is a primary cause of low tensile properties and lack of increase in thermal stability. Such phenomenon was also confirmed by fracture surface analysis of scanning electron microscope (SEM). Experimental data were compared with theoretical models from the literatures, which are used to predict the properties of two component mixtures. The results revealed that experimental values of dielectric constant and CTE z agreed with the theoretical calculated values. It was also found that the modified Nicolais-Narkis equation provided a good estimation for the tensile strength of composite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
《Ceramics International》2023,49(13):21492-21501
Copper-clad laminate (CCL) comprised of copper foil and polytetrafluoroethylene (PTFE) faces severe thermal expansion mismatch due to the discrepancy in coefficient of thermal expansion (CTE) between the two components. Incorporating inorganic fillers with low CTE into PTFE has been proved to be a promising way to achieve the goal. However, it is a challenge to achieve homogeneous distribution and good interfacial interaction of fillers in PTFE composites owing to the characteristics of PTFE emulsion. In this work, core@shell structured SiO2@polydopamine fillers (SiO2@PDA) were synthesized and incorporated into PTFE matrix to form SiO2@PDA/PTFE composites. Due to the presence of PDA shell, SiO2@PDA exhibited improved dispersion and interfacial interaction, contributing to the reduced CTE and suppressed dielectric deterioration of SiO2@PDA/PTFE composites. With 40 vol% of filler, the CTE of SiO2@PDA/PTFE composite was efficiently reduced (50%), coupled with a limited sacrifice of only 2% and 40% of increments for dielectric constant (Dk, 2.3) and dielectric loss (Df, 2.4 × 10−3), respectively (@40 GHz), as compared with that of the corresponding SiO2/PTFE composite. The fillers and composites were comprehensively characterized to verify the mechanism of CTE and dielectric properties of the composites.  相似文献   

3.
To improve the flame-retardant property of low-density polyethylene (LDPE) composites, a novel intumescent flame retardant (IFR) consisting of ammonium polyphosphate (APP) covered by silicon dioxide and 3-(Methylacryloxyl) propyltrimethoxy silane (KH-570) (SiO2@MAPP) and double pentaerythritol (DPER) was synthesized. Various methods were applied to structural characterization and property investigations of different samples. The results indicated that the solubility of APP decreased after coating with silicon dioxide (SiO2) and KH-570. The flame retardancy of LDPE composites was improved with addition of IFR containing SiO2@MAPP/DPER. With 30 wt% addition of IFR containing SiO2@MAPP /DPER, the limiting oxygen index reached 26.8% and the tensile strength was 3.30 MPa. The tensile strength was 7.14% higher than that of 30 wt% IFR without SiO2@MAPP. The smoke density test showed that the flue gas emission was obviously improved. The addition of SiO2@MAPP effectively increased the residual carbon content of composites and thermal stability of the composites.  相似文献   

4.
Polyimides (PIs) as high‐performance organic matrices are used in the preparation of PI composites because of their excellent mechanical, thermal and dielectric properties. The sol–gel method is a promising technique for preparing these PI composites due to the mild reaction conditions and the process being controllable. Although sulfonated polyimide (SPI) proton‐exchange membranes have attracted much attention recently, studies on preparing SPI‐based hybrid proton‐exchange membranes for fuel cells have been rare. A series of SPI? SiO2 hybrid proton‐exchange membranes were prepared from amino‐terminated SPI pre‐polymers, 3‐glycidoxypropyltrimethoxysilane (KH‐560) and tetraethylorthosilicate through a co‐hydrolysis and condensation process using an in situ sol–gel method. The reactive silane KH‐560 was used to react with amino‐terminated SPI to form silane‐capped SPI in order to improve the compatibility between the polymer matrix and the inorganic SiO2 phase. The microstructure and mechanical, thermal and proton conduction properties were studied in detail. The hybrid membranes were highly uniform without phase separation up to 30 wt% SiO2. The storage modulus and tensile strength of the hybrid membranes increased with increasing SiO2 content. The introduction of SiO2 improved the methanol resistance while retaining good proton conductivity. The hybrid membrane with 30 wt% SiO2 exhibited a proton conductivity of 10.57 mS cm?1 at 80 °C and methanol permeability of 2.3 × 10?6 cm2 s?1 possibly because the crosslinking structure and SiO2 phases formed in the hybrids could retain water and were helpful to proton transport. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
In this work, we presented a simple strategy to fabricate medium dielectric constant and low-loss composites for microwave substrate applications. MgO-LiF co-doped Li2TiO3 (LT) powders were fabricated by the solid-state reaction route and modified by perfluorooctyltriethoxysilane (F8261). The LT/polytetrafluoroethylene (PTFE) composites were fabricated by cold pressing and hot treatment. The XPS and contact angle analysis indicated that the fluorinated group was introduced to LT particle successfully. The effects of modified LT powders content on the dielectric, thermal, and mechanical properties of composites were investigated. As the modified LT content increases, the dielectric constant, dielectric loss, and temperature coefficient of dielectric constant (τε) increase while the bending strength and coefficient of thermal expansion (CTE) decrease, which is attributed to the higher dielectric constant of LT ceramic, more pores, stable τε of LT ceramic, interface defects and low CTE of LT ceramic, respectively. The composites with 60 wt % LT exhibit the best microwave dielectric properties: εr = 6.8, tanδ = 0.001, τε = −29.6 ppm °C−1 at 8 GHz and acceptable coefficient of thermal expansion (28.3 ppm °C−1). Therefore, modified LT powders filled PTFE composites are potential materials for high-frequency microwave substrate applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47980.  相似文献   

6.
Modifying nanoparticles for polymer nanocomposites is important for multifunctional and low-cost developmental direction. However, nanoparticles have several deficiencies, such as dispersion, agglomeration, and poor binding ability with most polymers. This work used soft polyvinyl chloride (PVC with 33.1% plasticizer volume) as the matrix. Polycaprolactone (PCL) was synthesized on the surface of SiO2 by the bridging effect of silane coupling agent (SiO2-PCL), which was expected to improve the bond strength between SiO2 and soft PVC matrix. Moreover, it enhanced the dispersion of SiO2 in the PVC matrix. The results revealed that SiO2-PCL was nanodispersed in a soft PVC matrix and played a plasticizer role in the composite, which enhanced the tensile strength and elongation at break of PVC composites. The thermal stability and solvent extraction stability of PVC composites elevated with the increase of SiO2-PCL content. When the content of SiO2-PCL was 8 wt%, the tensile strength (14.54 MPa) and elongation at break (149.47%) of PVC composites were the highest, 64.36% and 60.48% higher than those of unfilled PVC, respectively. It was indicated that PVC composites were dramatically toughened and strengthened by modified SiO2, improving their overall performance.  相似文献   

7.
《Ceramics International》2020,46(6):7531-7540
The modified 0.7Ba (Co1/3Nb2/3)O3-0.3Ba(Zn1/3Nb2/3)O3 (BCZN) powders filled PTFE composites were synthesized by hot-pressing. The influences of BCZN content on the microstructure, dielectric, thermal, mechanical properties and moisture absorption were investigated systematically. The modified BCZN powders filled PTFE composites exhibited better microstructure and dielectric properties compared with untreated powders. Various mathematic models were utilized to predict the dielectric constant of different composites and the effective medium theory (EMT) showed perfect consistency with the experimental results. The modified BCZN/PTFE composites possess the best comprehensive properties at the powders content of 50 vol% with high dielectric constant (εr) of 7.7, low loss (tanδ) of 0.0014, acceptable temperature coefficient of dielectric constant (τε) of −125.6 ppm/°C and temperature coefficient of resonant frequency (τf) of 29.4 ppm/°C at 7 GHz, low moisture absorption of 0.07% and low coefficient of thermal expansion (CTE) of 33 ppm/°C. All the results show modified BCZN/PTFE composites are the potential materials for microwave substrate applications.  相似文献   

8.
Thermoplastic cassava starch (TPS)/poly(vinyl alcohol) (PVA)/silica (SiO2) composites were prepared by a melt‐mixing method. The effects of the content and surface properties of SiO2 on the processing, mechanical properties, thermal stability, morphology, and structure of the TPS/PVA/SiO2 composites were investigated. With increasing SiO2 content, the plasticizing times of the TPS/PVA/SiO2 composites were shortened. After the SiO2 surface was treated with a silane coupling agent (KH550), the plasticizing times of the TPS/PVA/SiO2 composites decreased significantly. The tensile strength, elongation at break, and Young's modulus of the TPS/PVA/SiO2 composites increased. The mechanical properties of the TPS/PVA/SiO2 composites containing treated SiO2 were higher than those with untreated SiO2. The thermal decomposition temperatures of the TPS/PVA/SiO2 composites were improved with the addition of SiO2. The presence of inorganic fillers was beneficial to the improvement of the thermal stability of the polymers. The reaction between the treated SiO2 and the starch molecules was beneficial to the formation of more stable structures. The treated SiO2 indicated good interfacial adhesion and uniform dispersion in the matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44020.  相似文献   

9.
In this paper, PTFE (polytetrafluoroethylene)/SiO2 organic–inorganic hybrids were prepared with PTFE emulsion and tetraethoxysilanes (TEOS) through in-situ Sol–gel process, and then modified by PTFE grafted polymer. The studies included Sol–gel manufacturing process, the effects of SiO2 content and graft polymer on the properties of the hybrids. The result showed that, cosolvent ethanol was not needed during the process of Sol–gel because it could make PTFE emulsion colloidal particles agglomerated. When the mass fraction of SiO2 was 1.05 %, the tensile strength reached 20.96 MPa, which was nearly twice as much as that of the pure PTFE sample. Hybrids were treated by PTFE grafted glycidyl methacrylate (PTFE-g-GMA) and silane coupling agent KH-550, after which the tensile properties of hybrids were all enhanced. SEM (scanning electron microscope) images showed that SiO2 changed the original fracture morphology of PTFE. The diameter of SiO2 could reach 110 nm in the hybrid, and the size of SiO2 was further refined by modification. Hybrids with different contents of SiO2 were also analyzed with TGA (thermogravimetric analyzer), through which it could be found that decomposition temperature were improved with an increasing SiO2 content. Furthermore, the crystallinity reached a maximum value 47.03 % measured by DSC (different scanning calorimetry) when the SiO2 content was 2.55 %. Additionally, more SiO2 could hinder the motion of chain segment and destroy the crystallization sequence length, so the crystallinity and crystallization velocity both decreased at the mass fraction of 7.37 %, but the crystallization behavior was enhanced after modification with graft polymer. It has been found that PTFE-g-GMA contributes to the compatibility between PTFE and SiO2.  相似文献   

10.
Nanosilica/polyarylene ether nitriles terminated with phthalonitrile (SiO2/PEN‐t‐Ph) composites were prepared by hot‐press approach. To ensure the nano‐SiO2 can disperse uniformly, the solution casting method combined with ultrasonic dispersion technology had been taken previously. The mass fraction of nano‐SiO2 particles was varied to investigate their effect on the thermal, mechanical, and dielectric properties of the nanocomposites. From scanning electron microscope images, it was found that the nanoSiO2 particles were dispersed uniformly in the PEN‐t‐Ph matrix when the addition of nano‐SiO2 was less than 16.0 wt%. However, when the mass fraction of nano‐SiO2 increased to 20.0 wt%, the nano‐SiO2 particles tend to self‐aggregate and form microns sized particles. Thermal studies revealed that nano‐SiO2 particles did not weaken the thermal stabilities of the PEN‐t‐Ph matrix. Mechanical investigation manifested that the SiO2/PEN‐t‐Ph nanocomposites with 12.0 wt% nano‐SiO2 loading showed the best mechanical performance with tensile strength of 108.2 MPa and tensile modulus of 2107.5 Mpa, increasing by 14% and 19%, respectively as compared with the pure PEN‐t‐Ph film. Dielectric measurement showed that the dielectric constant increased from 3.70 to 4.15 when the nano‐SiO2 particles varied from 0.0 to 20.0 wt% at 1 kHz. Therefore, such composite was a good candidate for high performance materials at elevated temperature environment. POLYM. COMPOS., 35:344–350, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
Epoxy resin (EPR) insulations play a vital role in the insulation of modern power electronic equipment owing to their excellent dielectric properties. However, due to the high-power density and miniaturization of power equipment which causes high heat fluxes under high voltage and high-frequency stresses, EPR with good thermal and insulation properties is urgently needed. In this study, the polydopamine functionalized micro-BN and core-shell nano TiO2–SiO2 particles are dispersed in EPR to simultaneously improve thermal and dielectric insulation properties. It is revealed that the addition of micro-nano particles significantly improves the thermal and dielectric performance. Particularly, the high thermal conductivity of micro-BN and the dielectric barrier effect due to the core-shell structure of nano TiO2–SiO2 are the main reasons for improved thermal and dielectric insulation performance, respectively. The EPR composite containing 3 wt% of micro-BN and 1 wt% of nano TiO2–SiO2 exhibits the optimal performance with 0.49 W/mK thermal conductivity and the highest dielectric strength among all the samples, that is, 60.61 kV/mm even at 10 kHz and 90°C. This study found that the crucial factors are the surface encapsulation, weight percent, and homogeneous dispersion of particles in EPR, the dielectric barrier effect, thermal conductivity, and the mismatch between the dielectric constant of EPR and particles. This study proposes the optimal weight percent of suitable micro-nano particles for EPR to produce suitable composites for high-frequency and high-temperature applications.  相似文献   

12.
Low-softening-point La2O3-B2O3-CaO-P2O5 (LBCP) glass-ceramic/cordierite composite systems have been prepared in this work. Influence of the ratio of La2O3 to B2O3 and the content of cordierite on the sintering behavior, microstructure, sintering quality, thermal properties and dielectric properties of composites are studied. The results show that high La2O3/B2O3 ratio improves the crystalline quality of LBCP glass-ceramic, but also narrows its process window. The increase of cordierite content reduces the coefficient of thermal expansion (CTE) value of composites obviously. However, excess cordierite is detrimental to the densification of the composite microstructure, and too low cordierite content causes serious foaming. Sample containing 30?wt% LBCP1 glass-ceramic and 70?wt% cordierite sintered at 850?°C shows excellent properties: relative density of 95.26%, CTE value of 4.12?ppm/°C, dielectric constant of 4.78 (1?MHz)/4.52 (12.8?GHz), dielectric loss of 2.3?×?10?3 (1?MHz)/2.5?×?10?3 (12.8?GHz) and the ability to co-fire with silver, which suggests that LBCP glass/cordierite composite system has potential to meet the requirements of LTCC substrate material.  相似文献   

13.
Composites of low-density polyethylene containing between 1 and 5?wt% of Si/SiO2 core/shell nanoparticles were prepared by ball milling method. The thermal, mechanical, and dielectric properties of composites were investigated in terms of composition, frequency, and temperature. The results showed that the dielectric permittivity increased smoothly with a rise of Si/SiO2 particle. The dielectric permittivity and loss decreases and increases with temperature, respectively. The resistance of composites to erosion due to partial discharge was significantly improved by adding nanoparticles. The results have demonstrated that ball milling was an effective method for producing relatively homogeneous nanocomposite up to 4?wt% Si/SiO2.  相似文献   

14.
Ba0.3Sr0.475Ce0.03La0.12Ti0.997Mn0.003O3/Polytetrafluoroethylene (PTFE) composites were prepared using powder processing technique. The effects of the ceramic filler volume fraction and the coupling agent on the phase composition, microstructure, dielectric and thermal properties of the composites were investigated in this paper. The ceramic filler dispersion in the PTFE matrix, thus the dielectric loss, permittivity, and dimensional thermal stability of the composite was considerably improved by the modification of BST filler surface using phenyl trimethoxy silane (PTMS) coupling agent. Variation of the dielectric permittivity of the composite with composition was well fitted by the effective medium theory (EMT) model in the experimental compositional range. The obtained silane-treated composite with 0.5 Vf BST exhibits extremely low dielectric loss: εr = 16, tan δ = 5.4 × 10−4 @1 MHz and 5.16 ± 0.6 × 10−3 @ 10 GHz. The CTE of the composites was reduced to 43 ppm/°C.  相似文献   

15.
Nowadays, microwave dielectric substrate materials have been extensively investigated to meet the requirements of rapid development in modern communications. Among them, the composites of ceramic powder filled polytetrafluoroethylene (PTFE) have been a hot topic. However, the compatibility and connectivity between the surface of ceramics and PTFE molecular chains in the samples are usually low. Herein novel PTFE based composites with different contents of Al2Mo3O12 (20–60 wt%) modified by C14H19F13O3Si (F8261) coupling agent were designed and prepared. The coupling agent F8261 has been successfully grafted to the surface of Al2Mo3O12 powders, effectively promoting the densification and dielectric properties of the composites. As the content of the modified Al2Mo3O12 powders increases from 20 to 60 wt%, the εr value increases from 3.4 to 4.2, and tanδ almost remains constant at the beginning and increases with much more Al2Mo3O12 added. The Al2Mo3O12-PTFE composites filled with 30 wt% Al2Mo3O12 present the optimal dielectric properties of εr = 3.6 and tanδ = 0.0018 with a high density of 95.6%. In addition, the electromagnetic and multiphysic simulation of a 24 GHz substrate integrated waveguide filter on the basis of the 30 wt% Al2Mo3O12 - 70 wt% PTFE composite was carried out. It was revealed that the filter presented high stability on the electrical parameters caused by self-heating and dimension deformation due to the good microwave dielectric, thermal and mechanical properties of the substrate. These results indicate that the as-prepared 30 wt% Al2Mo3O12 - 70 wt% PTFE composite would be a promising candidate for high-performance microwave dielectric substrates.  相似文献   

16.
Ceramic/polymer composites have great potential to achieve the concomitant enhancement of both dielectric constant and breakdown field while maintaining other superior properties of the polymer matrix, ideal for elastomer sensors, actuators, capacitive energy storage, and many other applications. However, material incompatibility between the ceramic filler and the polymer matrix often leads to void formation, particle aggregation and phase separation, with significantly degraded performance. Herein, through surface modification, co-doped TiO2 particles were uniformly dispersed and bridged onto the silicone rubber matrix via a silane coupling agent for fabricating composites via mechanical mixing and hot-pressing. The synthesized composites exhibit enhanced dielectric constant, increased from 2.78 to 5.06 when 50 wt% co-doped TiO2 particles are incorporated. Their dielectric loss is less than 0.001 in a broad frequency range. Theoretical modelling and experimental results reveal that the morphology and dispersion state of co-doped TiO2 particles were crucial to the dielectric properties of the silicone rubber-based composites. Besides, the composites are thermally stable up to 400 °C. Significantly increased tensile strength (612 kPa) and elongation at break (330%) were obtained for the composite incorporated with 30 wt% co-doped TiO2 particles, accompanied by a moderate increased elastic module (540 kPa). Such composites have the potential for different applications.  相似文献   

17.
The present study was carried out to determine the filler characteristics and to investigate the effects of three types of mineral fillers (CaCO3, silica, and mica) and filler loadings (10–40 wt%) on the properties of polypropylene (PP) composites. The characteristics of the particulate fillers, such as mean particle size, particle size distribution, aspect ratio, shape, and degree of crystallinity were identified. In terms of mechanical properties, for all of the filled PP composites, Young's modulus increased, whereas tensile strength and strain at break decreased as the filler loading increased. However, 10 wt% of mica in a PP composite showed a tensile strength comparable with that of unfilled PP. Greater tensile strength of mica/PP composites compared to that of the other composites was observed because of lower percentages of voids and a higher aspect ratio of the filler. Mica/PP also exhibited a lower coefficient of thermal expansion (CTE) compared to that of the other composites. This difference was due to a lower degree of crystallinity of the filler and the CTE value of the mica filler. Scanning electron microscopy was used to examine the structure of fracture surfaces, and there was a gradual change in tensile fracture behavior from ductile to brittle as the filler loading increased. The nucleating ability of the fillers was studied with differential scanning calorimetry, and a drop in crystallinity of the composites was observed with the addition of mineral filler. Studies on the hybridization effect of different (silica and mica) filler ratios on the properties of PP hybrid composites showed that the addition of mica to silica‐PP composites enhanced their tensile strength and modulus. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
Preparation and property characterization of encapsulation resin contained hexagonal boron nitride (hBN) as inorganic filler were carried out in this work. The dielectric properties, coefficient of thermal expansion (CTE), thermal conductivity, curing kinetics, adhesion strength and viscosity of the resins with the load of hBN filler ranging from 9.2 to 25.7 vol.% (20–70 wt.%) were evaluated. It was found that the dielectric properties of resin containing SiO2 filler are inferior to that containing hBN. Also, the resins possessed lower CTE and the higher T g when the hBN contents were high (>15 vol.%) and the resin containing 25.7 vol.% hBN exhibited the largest thermal conductivity of 1.08 W/m K. Adhesion strength of the composite resins decreased with increase of hBN content and the adhesion strength on various substrates was found to be in the order of: alumina > Si wafer > eutectic PbSn solder. An erratum to this article can be found at  相似文献   

19.
High performance silica/epoxy nanocomposites were prepared through mixing epoxy, tetraethyl orthosilicate (TEOS), γ-aminoproplytriethyoxy siliane(APTES), and triethyltrtramine (TETA) at 25 °C via sol-gel method on one-step. The effects of content of TEOS and coupling reagents on the mechanical and thermal properties of SiO2/EP composites were studied. Microcosmic morphology and properties of the hybrid materials were characterized by FT-IR, TEM, FESEM, and DSC. Results revealed that SiO2/EP composites achieve the optimal mechanical and thermal properties when the composites prepared with mass ratio of TEOS/APTES/epoxy for 3/2/100 without acetone. Compared with pristine epoxy, the tensile strength, elongation at break, impact strength and bend strength increased 67.6 %, 190 %, 82.1 % and 15.7 %, respectively. The further study was to investigate the content of TEOS and APTES effecting on mechanical properties and water sorption of fiber reinforced composites, which used the above compound as matrix resin.  相似文献   

20.
Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X‐ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m?1 °C?1 and 34 ppm/°C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号