首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Shear locking is a major issue emerging in the computational formulation of beam and plate finite elements of minimal number of degrees of freedom as it leads to artificial overstiffening. In this paper, discontinuous Timoshenko beam and Mindlin‐Reissner plate elements are developed by adopting the Hellinger‐Reissner functional with the displacements and through‐thickness shear strains as degrees of freedom. Heterogeneous beams and plates with weak discontinuity are considered, and the mixed formulation has been combined with the extended finite element method (FEM); thus, mixed enrichment functions are used. Both the displacement and the shear strain fields are enriched as opposed to the traditional extended FEM where only the displacement functions are enriched. The enrichment type is restricted to extrinsic mesh‐based topological local enrichment. The results from the proposed formulation correlate well with analytical solution in the case of the beam and in the case of the Mindlin‐Reissner plate with those of a finite element package (ABAQUS) and classical FEM and show higher rates of convergence. In all cases, the proposed method captures strain discontinuity accurately. Thus, the proposed method provides an accurate and a computationally more efficient way for the formulation of beam and plate finite elements of minimal number of degrees of freedom.  相似文献   

2.
In this paper, a new multiscale–multiphysics computational methodology is devised for the analysis of coupled diffusion–deformation problems. The proposed methodology is based on the variational multiscale principles. The basic premise of the approach is accurate fine‐scale representation at a small subdomain where it is known a priori that important physical phenomena are likely to occur. The response within the remainder of the problem domain is idealized on the basis of coarse‐scale representation. We apply this idea to evaluate a coupled mechano‐diffusion problem that idealizes the response of titanium structures subjected to a thermo–chemo–mechanical environment. The proposed methodology is used to devise a multiscale model in which the transport of oxygen into titanium is modeled as a diffusion process, whereas the mechanical response is idealized using concentration‐dependent elasticity equations. A coupled solution strategy based on operator split is formulated to evaluate the coupled multiphysics and multiscale problem. Numerical experiments are conducted to assess the accuracy and computational performance of the proposed methodology. Numerical simulations indicate that the variational multiscale enrichment has reasonable accuracy and is computationally efficient in modeling the coupled mechano‐diffusion response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A consistent multiscale formulation is presented for the bending analysis of heterogeneous thin plate structures containing three dimensional reinforcements with in-plane periodicity. A multiscale asymptotic expansion of the displacement field is proposed to represent the in-plane periodicity, in which the microscopic and macroscopic thickness coordinates are set to be identical. This multiscale displacement expansion yields a local three dimensional unit cell problem and a global homogenized thin plate problem. The local unit cell problem is discretized with the tri-linear hexahedral elements to extract the homogenized material properties. The characteristic macroscopic deformation modes corresponding to the in-plane membrane deformations and out of plane bending deformations are discussed in detail. Thereafter the homogenized material properties are employed for the analysis of global homogenized thin plate with a smoothed quadratic Hermite triangular element formulation. The quadratic Hermite triangular element provides a complete C1 approximation that is very desirable for thin plate modeling. Meanwhile, it corresponds to the constant strain triangle element and is able to reproduce a simple piecewise constant curvature field. Thus a unified numerical implementation for thin plate analysis can be conveniently realized using the triangular elements with discretization flexibility. The curvature smoothing operation is further introduced to improve the accuracy of the quadratic Hermite triangular element. The effectiveness of the proposed methodology is demonstrated through numerical examples.  相似文献   

4.
Prediction of the coalescence of adjacent cracks is critical for residual strength estimation of structures under multiple site damage conditions. A methodology successfully developed for the case of crack link‐up prediction of un‐stiffened plates, is extended for the case of typical cracked stiffened aircraft panels. The proposed link‐up criterion is based on the change in the magnitudes of elastic and plastic strain energies of the stiffened panel, before and after the cracks coalesce. The strain energy magnitudes of interest are calculated using non‐linear elastic–plastic finite‐element analysis. For the application and verification of the method, experimental results from the open literature are used. Residual strength values calculated by the proposed methodology are in good agreement with the experimental results. The present criterion provides superior results when compared to the existing and commonly applied link‐up criteria.  相似文献   

5.
A hybrid multiscale framework is presented, which processes the material scales in a concurrent manner, borrowing features from hierarchical multiscale methods. The framework is used for the analysis of non‐linear heterogeneous materials and is capable of tackling strain localization and failure phenomena. Domain decomposition techniques, such as the ?nite element tearing and interconnecting method, are used to partition the material in a number of non‐overlapping domains and adaptive re?nement is performed at those domains that are affected by damage processes. This re?nement is performed in terms of material scale and ?nite element size. It is veri?ed that the results are independent of the chosen domain decomposition. Moreover, the multiscale analyses are validated with reference solutions obtained with a full ?ne‐scale solution procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

7.
This paper develops an enriched element‐failure method for delamination analysis of composite structures. This method combines discontinuous enrichments in the extended finite element method and element‐failure concepts in the element‐failure method within the finite element framework. An improved discontinuous enrichment function is presented to effectively model the kinked discontinuities; and, based on fracture mechanics, a general near‐tip enrichment function is also derived from the asymptotic displacement fields to represent the discontinuity and local stress intensification around the crack‐tip. The delamination is treated as a crack problem that is represented by the discontinuous enrichment functions and then the enrichments are transformed to external nodal forces applied to nodes around the crack. The crack and its propagation are modeled by the ‘failed elements’ that are applied to the external nodal forces. Delamination and crack kinking problems can be solved simultaneously without remeshing the model or re‐assembling the stiffness matrix with this method. Examples are used to demonstrate the application of the proposed method to delamination analysis. The validity of the proposed method is verified and the simulation results show that both interlaminar delamination and crack kinking (intralaminar crack) occur in the cross‐ply laminated plate, which is observed in the experiment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We present a multiscale method that couples atomistic models with continuum mechanics. The method is based on an overlapping domain‐decomposition scheme. Constraints are imposed by a Lagrange multiplier method to enforce displacement compatibility in the overlapping subdomain in which atomistic and continuum representations overlap. An efficient version of the method is developed for cases where the continuum can be modelled as a linear elastic material. An iterative scheme is utilized to optimize the coupled configuration. Conditions for the regularity of the constrained matrices are determined. A method for computing strain in atomistic models and handshake domains is formulated based on a moving least‐square approximation which includes both extensional and angle‐bending terms. It is shown that this method exactly computes the linear strain field. Applications to the fracture of defected single‐layer atomic sheets and nanotubes are given. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an enriched meshless method for fracture analysis of cracks in homogeneous, isotropic, non‐linear‐elastic, two‐dimensional solids, subject to mode‐I loading conditions. The method involves an element‐free Galerkin formulation and two new enriched basis functions (Types I and II) to capture the Hutchinson–Rice–Rosengren singularity field in non‐linear fracture mechanics. The Type I enriched basis function can be viewed as a generalized enriched basis function, which degenerates to the linear‐elastic basis function when the material hardening exponent is unity. The Type II enriched basis function entails further improvements of the Type I basis function by adding trigonometric functions. Four numerical examples are presented to illustrate the proposed method. The boundary layer analysis indicates that the crack‐tip field predicted by using the proposed basis functions matches with the theoretical solution very well in the whole region considered, whether for the near‐tip asymptotic field or for the far‐tip elastic field. Numerical analyses of standard fracture specimens by the proposed meshless method also yield accurate estimates of the J‐integral for the applied load intensities and material properties considered. Also, the crack‐mouth opening displacement evaluated by the proposed meshless method is in good agreement with finite element results. Furthermore, the meshless results show excellent agreement with the experimental measurements, indicating that the new basis functions are also capable of capturing elastic–plastic deformations at a stress concentration effectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
We introduce a methodology to model shear band evolution in the quasi‐static regime using the extended finite element method. We enrich the finite element polynomial displacement field with a fine scale function, which models the high displacement gradient in the shear band. For this purpose we use a local partition of unity and a parameterized displacement enrichment based on closed form solutions for one‐dimensional shear bands. A stabilized consistent penalty method is used to circumvent locking in the regularized elasto‐viscoplastic plane‐strain regime and to guarantee element stability. The loss of stability of the boundary value problem is used as an indicator of shear band initiation point and direction. Shear band development examples are shown, illustrating the capabilities of the method to track shear band evolution and strains as high as 1000%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a two‐dimensional displacement‐based meshfree‐enriched FEM (ME‐FEM) is presented for the linear analysis of compressible and near‐incompressible planar elasticity. The ME‐FEM element is established by injecting a first‐order convex meshfree approximation into a low‐order finite element with an additional node. The convex meshfree approximation is constructed using the generalized meshfree approximation method and it possesses the Kronecker‐delta property on the element boundaries. The gradient matrix of ME‐FEM element satisfies the integration constraint for nodal integration and the resultant ME‐FEM formulation is shown to pass the constant stress test for the compressible media. The ME‐FEM interpolation is an element‐wise meshfree interpolation and is proven to be discrete divergence‐free in the incompressible limit. To prevent possible pressure oscillation in the near‐incompressible problems, an area‐weighted strain smoothing scheme incorporated with the divergence‐free ME‐FEM interpolation is introduced to provide the smoothing on strains and pressure. With this smoothed strain field, the discrete equations are derived based on a modified Hu–Washizu variational principle. Several numerical examples are presented to demonstrate the effectiveness of the proposed method for the compressible and near‐incompressible problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A new formulation and numerical procedures are developed for the analysis of arbitrary crack propagation in shells using the extended finite element method. The method is valid for completely non‐linear problems. Through‐the‐thickness cracks in sandwich shells are considered. An exact shell kinematics is presented, and a new enrichment of the rotation field is proposed which satisfies the director inextensibility condition. To avoid locking, an enhanced strain formulation is proposed for the 4‐node cracked shell element. A finite strain plane stress constitutive model based on the logarithmic corotational rate is employed. A cohesive zone model is introduced which embodies the special characteristics of the shell kinematics. Stress intensity factors are calculated for selected problems and crack propagation problems are solved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This contribution presents an extended global derivative recovery for enriched finite element methods (FEMs), such as the extended FEM along with an associated error indicator. Owing to its simplicity, the proposed scheme is ideally suited to industrial applications. The procedure is based on global minimization of the L2 norm of the difference between the raw strain field (C?1) and the recovered (C0) strain field. The methodology engineered in this paper extends the ideas of Oden and Brauchli (Int. J. Numer. Meth. Engng 1971; 3 ) and Hinton and Campbell (Int. J. Numer. Meth. Engng 1974; 8 ) by enriching the approximation used for the construction of the recovered derivatives (strains) with the gradients of the functions employed to enrich the approximation employed for the primal unknown (displacements). We show linear elastic fracture mechanics examples, both in simple two‐dimensional settings, and for a three‐dimensional structure. Numerically, we show that the effectivity index of the proposed indicator converges to unity upon mesh refinement. Consequently, the approximate error converges to the exact error, indicating that the error indicator is valid. Additionally, the numerical examples suggest a novel adaptive strategy for enriched approximations in which the dimensions of the enrichment zone are first increased, before standard h‐ and p‐adaptivities are applied; we suggest to coin this methodology e‐adaptivity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a new 4‐node hybrid stress element is proposed using a node‐based smoothing technique of tetrahedral mesh. The conditions for hybrid stress field required are summarized, and the field should be continuous for better performance of a constant‐strain tetrahedral element. Nodal stress is approximated by the node‐based smoothing technique, and the stress field is interpolated with standard shape functions. This stress field is linear within each element and continuous across elements. The stress field is expressed by nodal displacements and no additional variables. The element stiffness matrix is calculated using the Hellinger‐Reissner functional, which guarantees the strain field from displacement field to be equal to that from the stress field in a weak sense. The performance of the proposed element is verified by through several numerical examples.  相似文献   

15.
In the conventional displacement‐based finite element analysis of composite beam–columns that consist of two Euler–Bernoulli beams juxtaposed with a deformable shear connection, the coupling of the transverse and longitudinal displacement fields may cause oscillations in slip field and reduction in optimal convergence rate, known as slip locking. This locking phenomenon is typical of multi‐field problems of this type, and is known to produce erroneous results for the displacement‐based finite element analysis of composite beam–columns based on cubic transverse and linear longitudinal interpolation fields. This paper introduces strategies including the assumed strain method, discrete strain gap method, and kinematic interpolatory technique to alleviate the oscillations in slip and curvature, and improve the convergence performance of the displacement‐based finite element analysis of composite beam–columns. A systematic solution of the differential equations of equilibrium is also provided, and a superconvergent element is developed in this paper. Numerical results presented illustrate the accuracy of the proposed modifications. The solutions based on the superconvergent element provide benchmark results for the performance of these proposed formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A modelization of cracked plates under bending loads in the XFEM framework is addressed. The Kirchhoff–Love model is considered. It is well suited for very thin plates commonly used for instance in aircraft structures. Reduced HCT and FVS elements are used for the numerical discretization. Two kinds of strategies are proposed for the enrichment around the crack tip with, for both of them, an enrichment area of fixed size (i.e. independant of the mesh size parameter). In the first one, each degree of freedom inside this area is enriched with the nonsmooth functions that describe the asymptotic displacement near the crack tip. The second strategy consists in introducing these functions in the finite element basis with a single degree of freedom for each one. An integral matching is then used in order to ensure the ??1 continuity of the solution at the interface between the enriched and the non‐enriched areas. Finally, numerical convergence results for these strategies are presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A major challenge for crash failure analysis of laminated composites is to find a modelling approach, which is both sufficiently accurate, for example, able to capture delaminations, and computationally efficient to allow full‐scale vehicle crash simulations. Addressing this challenge, we propose a methodology based on an equivalent single‐layer shell formulation which is adaptively through‐the‐thickness refined to capture initiating and propagating delaminations. To be specific, single shell elements through the laminate thickness are locally and adaptively enriched using the extended finite element method such that delaminations can be explicitly modelled without having to be represented by separate elements. Furthermore, the shell formulation is combined with a stress recovery technique which increases the accuracy of predicting delamination initiations. The paper focuses on the parameters associated with identifying, introducing and extending the enrichment areas; especially on the impact of these parameters on the resulting structural deformation behaviour. We conclude that the delamination enrichment must be large enough to allow the fracture process to be accurately resolved, and we propose a suitable approach to achieve this. The proposed methodology for adaptive delamination modelling shows potential for being computationally efficient, and thereby, it has the potential to enable efficient and accurate full vehicle crash simulations of laminated composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner, we use the partition of unity framework to enrich the standard displacement‐based finite element approximation by additional (enriched) functions. These enriched functions are derived from the analytical expression of the asymptotic displacement field in the vicinity of the contact corner. To characterize the intensity of the singularity, a domain integral formulation is adopted to compute the generalized stress intensity factor (GSIF). Numerical results on benchmark problems are presented to demonstrate the improved accuracy and benefits of this technique. We conduct an investigation on issues pertaining to the extent of enrichment, accurate numerical integration of weak‐form integrals and the rate of convergence in energy. The use of partition of unity enrichment leads to accurate estimations of the GSIFs on relatively coarse meshes, which is particularly beneficial for modelling non‐linear sliding contacts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This paper proposes a simple numerical method to simulate ductile failure behaviours of tensile plates with interacting through‐wall cracks. The method is based on the finite element damage analysis using the stress‐modified fracture strain damage model. To validate the proposed method, simulated results are compared with a total of 23 published experimental data of flat tensile plates with interacting through‐wall cracks. Despite its simplicity, the proposed method well predicted the experimental maximum loads of tensile plates with interacting cracks, including the loads for crack coalescence. Systematic analyses are also performed to investigate the effect of the element size used in the finite element damage analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号