首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
针对结构与无限大声场的声振耦合系统中结构的双材料拓扑优化问题进行了研究。采用有限元与边界元方法分别对结构和声场进行离散。基于分段常数水平集(piecewise constant level set,PCLS)方法,构造了结构的刚度阵、质量阵与阻尼阵。优化目标选为最小化结构指定位置的振幅平方,采用伴随变量法进行灵敏度分析。引入二次罚函数方法来实现体积约束,基于灵敏度信息对优化参数进行重新定义,克服了参数的问题依赖性。数值结果表明优化设计可以显著降低结构的振幅,证实了优化方法的有效性。不同算例下体积约束在相同优化参数下均得到很好满足,说明了重新定义参数的优越性。  相似文献   

4.
Level set methods are becoming an attractive design tool in shape and topology optimization for obtaining efficient and lighter structures. In this paper, a dynamic implicit boundary‐based moving superimposed finite element method (s‐version FEM or S‐FEM) is developed for structural topology optimization using the level set methods, in which the variational interior and exterior boundaries are represented by the zero level set. Both a global mesh and an overlaying local mesh are integrated into the moving S‐FEM analysis model. A relatively coarse fixed Eulerian mesh consisting of bilinear rectangular elements is used as a global mesh. The local mesh consisting of flexible linear triangular elements is constructed to match the dynamic implicit boundary captured from nodal values of the implicit level set function. In numerical integration using the Gauss quadrature rule, the practical difficulty due to the discontinuities is overcome by the coincidence of the global and local meshes. A double mapping technique is developed to perform the numerical integration for the global and coupling matrices of the overlapped elements with two different co‐ordinate systems. An element killing strategy is presented to reduce the total number of degrees of freedom to improve the computational efficiency. A simple constraint handling approach is proposed to perform minimum compliance design with a volume constraint. A physically meaningful and numerically efficient velocity extension method is developed to avoid the complicated PDE solving procedure. The proposed moving S‐FEM is applied to structural topology optimization using the level set methods as an effective tool for the numerical analysis of the linear elasticity topology optimization problems. For the classical elasticity problems in the literature, the present S‐FEM can achieve numerical results in good agreement with those from the theoretical solutions and/or numerical results from the standard FEM. For the minimum compliance topology optimization problems in structural optimization, the present approach significantly outperforms the well‐recognized ‘ersatz material’ approach as expected in the accuracy of the strain field, numerical stability, and representation fidelity at the expense of increased computational time. It is also shown that the present approach is able to produce structures near the theoretical optimum. It is suggested that the present S‐FEM can be a promising tool for shape and topology optimization using the level set methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This paper aims to propose a meshless Galerkin level set method for shape and topology optimization of continuum structures. To take advantage of the implicit free boundary representation scheme, the design boundary is represented as the zero level set of a scalar level set function, to flexibly handle complex shape fidelity and topology changes by maintaining concise and smooth interface. Compactly supported radial basis functions (CSRBFs) are used to parameterize the level set function and construct the shape functions for meshfree approximations based on a set of unstructured field nodes. The meshless Galerkin method with global weak form is used to implement the discretization of the state equations. This provides a pathway to unify the two different numerical stages in most conventional level set methods: (1) the propagation of discrete level set function on a set of Eulerian grid and (2) the approximation of discrete equations on a set of Lagrangian mesh. The original more difficult shape and topology optimization based on the level set equation is transformed into a relatively easier size optimization, to which many efficient optimization algorithms can be applied. The proposed level set method can describe the moving boundaries without remeshing for discontinuities. The motion of the free boundary is just a question of advancing the discrete level set function in time by solving the size optimization. Several benchmark examples are used to demonstrate the effectiveness of the proposed method. The numerical results show that the proposed method can simplify numerical process and avoid numerical difficulties involved in most conventional level set methods. It is straightforward to apply the proposed method to more advanced shape and topology optimization problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A parameterization level set method is presented for structural shape and topology optimization of compliant mechanisms involving large displacements. A level set model is established mathematically as the Hamilton–Jacobi equation to capture the motion of the free boundary of a continuum structure. The structural design boundary is thus described implicitly as the zero level set of a level set scalar function of higher dimension. The radial basis function with compact support is then applied to interpolate the level set function, leading to a relaxation and separation of the temporal and spatial discretizations related to the original partial differential equation. In doing so, the more difficult shape and topology optimization problem is now fully parameterized into a relatively easier size optimization of generalized expansion coefficients. As a result, the optimization is changed into a numerical process of implementing a series of motions of the implicit level set function via an existing efficient convex programming method. With the concept of the shape derivative, the geometrical non‐linearity is included in the rigorous design sensitivity analysis to appropriately capture the large displacements of compliant mechanisms. Several numerical benchmark examples illustrate the effectiveness of the present level set method, in particular, its capability of generating new holes inside the material domain. The proposed method not only retains the favorable features of the implicit free boundary representation but also overcomes several unfavorable numerical considerations relevant to the explicit scheme, the reinitialization procedure, and the velocity extension algorithm in the conventional level set method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we propose a three‐dimensional (3D) grayscale‐free topology optimization method using a conforming mesh to the structural boundary, which is represented by the level‐set method. The conforming mesh is generated in an r‐refinement manner; that is, it is generated by moving the nodes of the Eulerian mesh that maintains the level‐set function. Although the r‐refinement approach for the conforming mesh generation has many benefits from an implementation aspect, it has been considered as a difficult task to stably generate 3D conforming meshes in the r‐refinement manner. To resolve this task, we propose a new level‐set based r‐refinement method. Its main novelty is a procedure for minimizing the number of the collapsed elements whose nodes are moved to the structural boundary in the conforming mesh; in addition, we propose a new procedure for improving the quality of the conforming mesh, which is inspired by Laplacian smoothing. Because of these novelties, the proposed r‐refinement method can generate 3D conforming meshes at a satisfactory level, and 3D grayscale‐free topology optimization is realized. The usefulness of the proposed 3D grayscale‐free topology optimization method is confirmed through several numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The level set method is a promising approach to provide flexibility in dealing with topological changes during structural optimization. Normally, the level set surface, which depicts a structure's topology by a level contour set of a continuous scalar function embedded in space, is interpolated on a fixed mesh. The accuracy of the boundary positions is therefore largely dependent on the mesh density, a characteristic of any Eulerian expression when using a fixed mesh. This article combines the adaptive moving mesh method with a level set structure topology optimization method. The finite element mesh automatically maintains a high nodal density around the structural boundaries of the material domain, whereas the mesh topology remains unchanged. Numerical experiments demonstrate the effect of the combination of a Lagrangian expression for a moving mesh and a Eulerian expression for capturing the moving boundaries.  相似文献   

9.
郭旭  赵康 《工程力学》2005,22(5):69-77
发展了一种利用水平集演化技术求解拓扑相关荷载作用下结构拓扑优化问题的数值方法.通过引入水平集函数,我们以隐含的方式对结构的拓扑和形状作了描述,从而把拓扑优化问题转化为了寻求最优水平集函数的数学规划问题.利用基于连续体概念的灵敏度分析技术,构造了用于驱动水平集演化的速度场.由于结构的边界可以用零水平集加以描述,因此利用适当的数学变换,我们可以方便地处理施加在结构上的拓扑相关荷载,这样就避免了以往算法中繁复的边界提取工作以及为了处理拓扑相关荷载所采取的特殊技巧.文末的数值算例表明了提出的优化方法在处理此类问题时所具有的独到的优越性.  相似文献   

10.
Structural optimization methods based on the level set method are a new type of structural optimization method where the outlines of target structures can be implicitly represented using the level set function, and updated by solving the so‐called Hamilton–Jacobi equation based on a Eulerian coordinate system. These new methods can allow topological alterations, such as the number of holes, during the optimization process whereas the boundaries of the target structure are clearly defined. However, the re‐initialization scheme used when updating the level set function is a critical problem when seeking to obtain appropriately updated outlines of target structures. In this paper, we propose a new structural optimization method based on the level set method using a new geometry‐based re‐initialization scheme where both the numerical analysis used when solving the equilibrium equations and the updating process of the level set function are performed using the Finite Element Method. The stiffness maximization, eigenfrequency maximization, and eigenfrequency matching problems are considered as optimization problems. Several design examples are presented to confirm the usefulness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this paper, we propose a new BEM for level‐set based topology optimization. In the proposed BEM, the nodal coordinates of the boundary element are replaced with the nodal level‐set function and the nodal coordinates of the Eulerian mesh that maintains the level‐set function. Because this replacement causes the nodal coordinates of the boundary element to disappear, the boundary element mesh appears to be immersed in the Eulerian mesh. Therefore, we call the proposed BEM an immersed BEM. The relationship between the nodal coordinates of the boundary element and the nodal level‐set function of the Eulerian mesh is clearly represented, and therefore, the sensitivities with respect to the nodal level‐set function are strictly derived in the immersed BEM. Furthermore, the immersed BEM completely eliminates grayscale elements that are known to cause numerical difficulties in topology optimization. By using the immersed BEM, we construct a concrete topology optimization method for solving the minimum compliance problem. We provide some numerical examples and discuss the usefulness of the constructed optimization method on the basis of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This article presents a numerical approach of topology optimization with multiple materials for the heat conduction problem. The multiphase level set model is used to implicitly describe the geometric boundaries of material regions with different conductivities. The model of multi-material representation has no emergence of the intermediate density. The optimization objective is to construct the optimal heat conductive paths which improve the efficiency of heat transfer. The dissipation of thermal transport potential capacity is taken as the objective function. The sensitivity analysis is implemented by the adjoint variable method, which is the foundation of constructing the velocity field of the level set equation. The optimal result is gradually realized by the evolution of multi-material boundaries, and the topological changes are naturally handled during the optimization process. Finally, the numerical examples are presented to demonstrate the feasibility and validity of the proposed method for topology optimization of the heat conduction problem.  相似文献   

14.
This paper presents a level‐set‐based topology optimization method based on numerically consistent sensitivity analysis. The proposed method uses a direct steepest‐descent update of the design variables in a level‐set method; the level‐set nodal values. An exact Heaviside formulation is used to relate the level‐set function to element densities. The level‐set function is not required to be a signed‐distance function, and reinitialization is not necessary. Using this approach, level‐set‐based topology optimization problems can be solved consistently and multiple constraints treated simultaneously. The proposed method leads to more insight in the nature of level‐set‐based topology optimization problems. The level‐set‐based design parametrization can describe gray areas and numerical hinges. Consistency causes results to contain these numerical artifacts. We demonstrate that alternative parameterizations, level‐set‐based or density‐based regularization can be used to avoid artifacts in the final results. The effectiveness of the proposed method is demonstrated using several benchmark problems. The capability to treat multiple constraints shows the potential of the method. Furthermore, due to the consistency, the optimizer can run into local minima; a fundamental difficulty of level‐set‐based topology optimization. More advanced optimization strategies and more efficient optimizers may increase the performance in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Structural shape and topology optimization using level set functions is becoming increasingly popular. However, traditional methods do not naturally allow for new hole creation and solutions can be dependent on the initial design. Various methods have been proposed that enable new hole insertion; however, the link between hole insertion and boundary optimization can be unclear. The new method presented in this paper utilizes a secondary level set function that represents a pseudo third dimension in two‐dimensional problems to facilitate new hole insertion. The update of the secondary function is connected to the primary level set function forming a meaningful link between boundary optimization and hole creation. The performance of the method is investigated to identify suitable parameters that produce good solutions for a range of problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we propose a level set‐based topology optimization method targeting metallic waveguide design problems, where the skin effect must be taken into account since the metallic waveguides are generally used in the high‐frequency range where this effect critically affects performance. One of the most reasonable approaches to represent the skin effect is to impose an electric field constraint condition on the surface of the metal. To implement this approach, we develop a boundary‐tracking scheme for the arbitrary Lagrangian Eulerian (ALE) mesh pertaining to the zero iso‐contour of the level set function that is given in an Eulerian mesh, and impose Dirichlet boundary conditions at the nodes on the zero iso‐contour in the ALE mesh to compute the electric field. Since the ALE mesh accurately tracks the zero iso‐contour at every optimization iteration, the electric field is always appropriately computed during optimization. For the sensitivity analysis, we compute the nodal coordinate sensitivities in the ALE mesh and smooth them by solving a Helmholtz‐type partial differential equation. The obtained smoothed sensitivities are used to compute the normal velocity in the level set equation that is solved using the Eulerian mesh, and the level set function is updated based on the computed normal velocity. Finally, the utility of the proposed method is discussed through several numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we propose a new implementation of the level set shape and topology optimization, the velocity field level set method. Therein, the normal velocity field is constructed with specified basis functions and velocity design variables defined on a given set of points that are independent of the finite element mesh. A general mathematical programming algorithm can be employed to find the optimal normal velocities on the basis of the sensitivity analysis. As compared with conventional level set methods, mapping the variational boundary shape optimization problem into a finite‐dimensional design space and the use of a general optimizer makes it more efficient and straightforward to handle multiple constraints and additional design variables. Moreover, the level set function is updated by the Hamilton‐Jacobi equation using the normal velocity field; thus, the inherent merits of the implicit representation is retained. Therefore, this method combines the merits of both the general mathematical programming and conventional level set methods. Integrated topology optimization of structures with embedded components of designable geometries is considered to show the capability of this method to deal with general design variables. Several numerical examples in 2D or 3D design domains illustrate the robustness and efficiency of the method using different basis functions.  相似文献   

18.
A new level set method for topology optimization of distributed compliant mechanism is presented in this study. By taking two types of mean compliance into consideration, several new objective functions are developed and built in the conventional level set method to avoid generating the de facto hinges in the created mechanisms. Aimed at eliminating the costly reinitialization procedure during the evolution of the level set function, an accelerated level set evolution algorithm is developed by adding an extra energy function, which can force the level set function to close to a signed distance function during the evolution. Two widely studied numerical examples in topology optimization of compliant mechanisms are studied to demonstrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate.  相似文献   

20.
This paper presents a finite element topology optimization framework for the design of two‐phase structural systems considering contact and cohesion phenomena along the interface. The geometry of the material interface is described by an explicit level set method, and the structural response is predicted by the extended finite element method. In this work, the interface condition is described by a bilinear cohesive zone model on the basis of the traction‐separation constitutive relation. The non‐penetration condition in the presence of compressive interface forces is enforced by a stabilized Lagrange multiplier method. The mechanical model assumes a linear elastic isotropic material, infinitesimal strain theory, and a quasi‐static response. The optimization problem is solved by a nonlinear programming method, and the design sensitivities are computed by the adjoint method. The performance of the presented method is evaluated by 2D and 3D numerical examples. The results obtained from topology optimization reveal distinct design characteristics for the various interface phenomena considered. In addition, 3D examples demonstrate optimal geometries that cannot be fully captured by reduced dimensionality. The optimization framework presented is limited to two‐phase structural systems where the material interface is coincident in the undeformed configuration, and to structural responses that remain valid considering small strain kinematics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号