首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Sarcomas range from curable tumors to those causing death via metastasis and recurrence. Thus, there is an urgent need for biomarker identification in order to assess the degree of malignancy, predict prognosis, and evaluate possible therapies. Various proteomic approaches and different clinical materials have been used to this end, and candidate biomarkers have been reported for the different types of sarcomas. However, the sample size used in these biomarker studies was generally insufficient, and thus far, no biomarker has been proved useful in clinics. Given that sarcomas are rare, biomarker validation in this setting is more challenging than in other malignancies. In gastrointestinal stromal tumor, adjuvant therapy has proven to be effective. However, only 40% patients experience metastasis after curative surgery alone, and the rest of the patients may not need adjuvant therapy. Using a proteomic approach, we identified pfetin (potassium channel tetramerization domain containing 12, KCTD 12) as a novel prognostic biomarker for sarcoma, and immunohistochemically confirmed its clinical usefulness by a multiinstitutional validation study. Here, we describe our experience and discuss the critical points in the discovery of this biomarker.  相似文献   

2.
    
Colorectal cancer (CRC) arises from the normal colon epithelium through the accumulation of genetic mutations and epigenetic alterations that are associated with progression along the histological adenoma-adenocarcinoma sequence. Elucidating the molecular alterations underlying disease progression will not only provide insight into the behavior of the tumors, but also could lead to the discovery of useful biomarkers for diagnosis, monitoring treatment responsiveness, or predicting disease outcomes. In the past a few years, there have been several evaluating differentially expressed protein biomarkers by employing proteomics technologies coupled with mass spectrometry. In the current review, we will briefly summarize the results from selected recent studies using tissue or serum samples from CRC patients in the past 5 years and discuss the opportunities and challenges in translating these findings from the research setting to clinical practice.  相似文献   

3.
    
This review discusses the current status of proteomics technology in endometrial cancer diagnosis, treatment and prognosis. The first part of this review focuses on recently identified biomarkers for endometrial cancer, their importance in clinical use as well as the proteomic methods used in their discovery. The second part highlights some of the emerging mass spectrometry based proteomic technologies that promise to contribute to a better understanding of endometrial cancer by comparing the abundance of hundreds or thousands of proteins simultaneously.  相似文献   

4.
    
Cancer cell lines are the most widely used experimental models in cancer research. Their advantages of easy growth and manipulation are unfortunately paralleled by their limitations derived from long-term growth in isolation from the rest of the tumor, and hence, lack of tumor microenvironment. We are however currently witnessing novel and transformative advances that are making cell lines more reflective of the human biology and therefore, better experimental models for cancer research. Beyond the experimental model used, the choice of cellular proteome is key in proteomics-based biomarker discovery. Over the last decade, cell line secretomes have been proposed as an alternative for tumor biomarker discovery due to the difficulties posed by plasma in terms of complexity and low abundance of tumor-specific biomarkers. Cell line secretomes are enriched with proteins already linked to tumorigenesis, which also have a good chance of being present in biological fluids. In this review, we will provide an overview of the main technical and biological issues related to cell line secretome analysis, and briefly discuss both the challenges and opportunities in its use for tumor biomarker discovery.  相似文献   

5.
    
Glaucoma is a leading cause of blindness; however, limited understanding of the molecular mechanisms involved in optic nerve degeneration hinders the development of improved treatment strategies. Proteomics techniques that combine the protein chemistry, MS, and bioinformatics offer the opportunity to shed light on molecular mechanisms so that new treatment strategies can be developed for immunomodulation, neuroprotection, neurorescue, neuroregeneration, and function gain in glaucoma. The proteomics technologies also hold great promise for biomarker discovery, another important goal of glaucoma research. As much as developing new treatment strategies, molecular biomarkers are strongly needed for early diagnosis of glaucoma, prediction of its prognosis, and monitoring the responses to new treatments. It is now a decade that the proteomics analysis techniques have been using to move glaucoma research forward. This review will focus on valuable applications of proteomics in the field of glaucoma research and highlight the power of this analytical toolbox in translational and clinical research toward better characterization and improved treatment of glaucomatous neurodegeneration and discovery of glaucoma-related molecular biomarkers.  相似文献   

6.
This report reviews the 5th US HUPO annual conference which was held in San Diego, California, from 22th to 25th February, 2009. The major goal of this year's meeting was to discuss future prospects within the field of proteomics and to push it towards integration with other synergizing technologies. Each day's sessions were guided by three broad themes: The Interface of Proteomics and Genomics, Systems Medicine, and Protein Structure and Modifications. As a summary this meeting has shown, that integration of multiple disciplines and high performance proteomics is needed to meet the demands of future proteomics.  相似文献   

7.
    
Purpose: The purpose of this study was to address the hypothesis that small vesicular urinary particles known as exosomes could be selectively microfiltered using low protein‐binding size exclusion filters, thereby simplifying their use in clinical biomarker discovery studies. Experimental design: We characterized a microfiltration approach using a low protein binding, hydrophilized polyvinylidene difluoride membrane to easily and efficiently isolate urinary exosomes from fresh, room temperature or 4°C urine, with a simultaneous depletion of abundant urinary proteins. Using LC‐MS, immunoblot analysis, and electron microscopy methods, we demonstrate this method to isolate intact exosomes and thereby enrich for a low abundant urinary proteome. Results: In comparison to other standard methods of exosome isolation including ultracentrifugation and nanofiltration, we demonstrate equivalent enrichment of the exosome proteome with reduced co‐purification of abundant urinary proteins. Conclusion and clinical relevance: In conclusion, we demonstrate a microfiltration isolation method that preserves the exosome structure, reduces contamination from higher abundant urinary proteins, and can be easily implemented into mass spectrometry analysis for biomarker discovery efforts or incorporation into routine clinical laboratory applications to yield higher sample throughput.  相似文献   

8.
    
Knowledge of the biologically relevant components of human tissues has enabled the invention of numerous clinically useful diagnostic tests, as well as non-invasive ways of monitoring disease and its response to treatment. Recent use of advanced MS-based proteomics revealed that the composition of human urine is more complex than anticipated. Here, we extend the current characterization of the human urinary proteome by extensively fractionating urine using ultra-centrifugation, gel electrophoresis, ion exchange and reverse-phase chromatography, effectively reducing mixture complexity while minimizing loss of material. By using high-accuracy mass measurements of the linear ion trap-Orbitrap mass spectrometer and LC-MS/MS of peptides generated from such extensively fractionated specimens, we identified 2362 proteins in routinely collected individual urine specimens, including more than 1000 proteins not described in previous studies. Many of these are biomedically significant molecules, including glomerularly filtered cytokines and shed cell surface molecules, as well as renally and urogenitally produced transporters and structural proteins. Annotation of the identified proteome reveals distinct patterns of enrichment, consistent with previously described specific physiologic mechanisms, including 336 proteins that appear to be expressed by a variety of distal organs and glomerularly filtered from serum. Comparison of the proteomes identified from 12 individual specimens revealed a subset of generally invariant proteins, as well as individually variable ones, suggesting that our approach may be used to study individual differences in age, physiologic state and clinical condition. Consistent with this, annotation of the identified proteome by using machine learning and text mining exposed possible associations with 27 common and more than 500 rare human diseases, establishing a widely useful resource for the study of human pathophysiology and biomarker discovery.  相似文献   

9.
G. Riva 《Virtual Reality》1998,3(4):259-266
While many virtual reality (VR) applications have emerged in the areas of entertainment, education, military training, physical rehabilitation, and medicine, only recently have some research projects begun to test the possibility of using virtual environments (VEs) for research in neuroscience, neurosurgery and for the study and rehabilitation of human cognitive and functional activities. Virtual reality technology could have a strong impact on neuroscience. The key characteristic of VEs is the high level of control of the interaction with the tool without the constraints usually found in computer systems. VEs are highly flexible and programmable. They enable the therapist to present a wide variety of controlled stimuli and to measure and monitor a wide variety of responses made by the user. However, at this stage, a number of obstacles exist which have impeded the development of active research. These obstacles include problems with acquiring funding for an almost untested new treatment modality, the lack of reference standards, the non-interoperability of the VR systems and, last but not least, the relative lack of familiarity with the technology on the part of researchers in these fields.  相似文献   

10.
11.
    
Identification of reliable non-invasive markers for the detection of invasive phenotype of urothelial carcinoma is needed. This study characterizes and compares protein expression profiles of adjacent non-neoplastic urothelium and invasive urothelial carcinoma to identify biomarkers for early detection of de novo bladder cancer. Differences in protein expression between adjacent non-neoplastic and high-grade, stage T4, grade 3 invasive urothelial carcinoma tissues were investigated using 2-DE, MALDI-TOF-MS, and data processing. Ingenuity Pathway Analysis (IPA) was applied to examine the biological mechanisms represented by the altered proteins. The 2-DE of the adjacent non-neoplastic urothelium and invasive urothelial carcinoma showed reproducibly similar proteomic mapping for each group distinguishing adjacent non-neoplastic urothelium from invasive urothelial carcinoma. Twenty-one proteins were altered in expression and one of these proteins, Choroideremia-like protein (CHML) was significantly overexpressed (p<0.005) and therefore was analyzed further using IHC and Western blot. Urothelial carcinoma presented an elevated expression of CHML but not adjacent non-neoplastic or normal bladder tissues. IPA revealed the involvement of CHML in cell morphology, cellular assembly, and organization. Further investigation is warranted to elucidate the biological significance of CHML and to validate its role as a biomarker for early detection of invasive urothelial carcinoma de novo.  相似文献   

12.
    
The majority of tumor-related deaths are due to metastasis. Despite the clinical importance of understanding metastasis, we lack knowledge of the molecular mechanisms underlying tumor cell spreading and cell survival far from the primary tumor. Elucidating the molecular characteristics of highly metastatic carcinoma cells would help identify biomarkers or therapeutic targets relevant to predicting or combatting metastasis, and for this the phenotype of metastatic cells could be much more important than their genotype. Hence, proteomic approaches have wide potential utility. This review discusses possibilities of analyzing metastasis-specific protein patterns in a range of sample types, including in vitro and in vivo cancer models, and tissues and biological fluids from patients. Proteome approaches can identify proteins involved in regulating the metastatic capacities of tumors.  相似文献   

13.
    
Several reasons have been put forward to explain the irreproducibility of proteomic biomarker search. However, these reasons pertain to almost every part of biomarker search across the entire analytical workflow but are entirely experimental or methodological. However, in this article we point out that there is a further cause of such irreproducibility. This is not an additional methodological or experimental cause but arises directly from the biology of protein expression. It arises from the fact that disease changes the diversity within protein families. This cause of irreproducibility has been very little studied in relation to proteomic biomarker search. Gene expression is highly variable even in healthy people. Therefore, multiple proteoforms are also to be expected when gene expression is disrupted by disease, proteoforms that may be differently altered by pathology. In consequence, it is illogical to expect that the whole protein family produces a reliably usable biomarker. It is more reasonable to expect that a specific proteoform fulfills this role. Appropriate sample pre‐fractionation methods and data analyses could help to identify this version, carrying the modification or the epitope required.  相似文献   

14.
15.
16.
    
Endometriosis is a complex gynecological disease, characterized by the presence and growth of endometrial tissue outside the uterus, resulting in pelvic pain and infertility. It occurs in 10% of women in their reproductive age. The viable endometrial cells enter the peritoneal cavity by retrograde menstruation, implant, and cause lesions ectopically; depending on their ability to survive, attach, grow, and invade. These “normal” endometrial cells turn “endometriotic” apparently because of inherent abnormalities present in them. Information on these molecular abnormalities is now being sought through proteomic approaches. Recent proteome-based comparisons between the eutopic endometrium from normal women and patients with endometriosis have revealed several proteins (many of which are shown to have a role in several cancers), of which a few have been validated as potential players in the etiology of endometriosis. After an initial in-flow of information from these proteome studies of eutopic endometrium, focus now needs to be expanded to the changes in the various protein PTMs and their upstream effectors present in these tissues. Early diagnosis of endometriosis through noninvasive means is the need of the hour as well—which would require the use of the presently existing immunoassays, along with the advancing MS-based proteomics. In this review, we aim to discuss these future thrust areas of human endometriosis proteomics and also present the proteomic advances made so far in understanding the molecular basis of endometriosis.  相似文献   

17.
Clinical proteomics is defined as application of proteome analysis aiming at improving the current clinical situation. As such, the success of clinical proteomics should be assessed based on the clinical impact following implementation of the findings. While we have experienced significant technological advancements in mass spectrometry in the last years, based on the above measure, this has not at all resulted in similar advancements in clinical proteomics. Although a large number of proteomic biomarkers have been described, most of them were not subsequently validated, and certainly have had no impact in clinical decision making as yet. Under the current conditions, it appears likely that the situation will not change significantly: we will be flooded by reports on biomarkers, but not see any implementation. In this article, some key issues in proteomic biomarker research are pinpointed, based on the experience with CE‐MS, likely also holding true for biomarkers resulting from other analysis domains.  相似文献   

18.
The impacts that the lack of physical cues and non-verbal cues of emotional expression has on the student learning experience in text based online environments were targeted separately in this study. A questionnaire was constructed with separate items for non-verbal cues of emotional expression and cues to physical identity. The survey also included questions about students’ previous experience with technology and collaboration, and their motivations for undertaking the course. Views about their interactions with other students were also sought. The responses of 256 students who had undertaken a text based online course where collaboration was a mandatory requirement were collected and subsequently analysed using cluster analysis. Four distinct cohorts of students were identified. Using a conceptual approach borrowed from neuroscience, modularity, it has been possible to encapsulate the effects of three distinct aspects of collaborating in text based online contexts, lack of cues to physical identity, lack of cues to emotional expression and interaction experience. These aspects were analysed alongside the student profiles for each of the four cohorts. The findings indicate that the external factors that an individual student brings to a learning context can impact on the learning experience. Neuroscientifically based knowledge that is relevant for the findings of the survey are identified and considered in terms of the questions raised from an interdisciplinary perspective.  相似文献   

19.
    
The HUPO Brain Proteome Project (HUPO BPP) held its 11th workshop in Kolymbari on March 3, 2009. The principal aim of this project is to obtain a better understanding of neurodiseases and ageing, with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss sub-project progress in the clinical neuroproteomics of human or mouse models of Alzheimer's and Parkinson's disease, and to define the needs and guidelines required for more advanced proteomics approaches. With the election of new steering committees, the members of the HUPO BPP elaborated an actual plan promoting activities, outcomes, and future directions of the HUPO BPP to acquire new funding and new participants.  相似文献   

20.
    
Isobaric tags for relative and absolute quantitation (iTRAQ), Tandem Mass Tags (TMT) and related chemical tag reagents provide analytical platforms for quantitative proteomics applied to clinical samples. In this Viewpoint article, applications for discovery and targeted modes are discussed with an emphasis on study design and technical considerations in biomarker analysis. The evolution and promise of emerging, related strategies are also discussed. It should be noted that iTRAQ and TMT users contributed to the key debates in the biomarker field, to define strategies for biomarker discovery for identification of clinical biomarkers, and continue to inform design of verification and validation assays via implementation of non-isobaric variants for targeted analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号