首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Lightweight composites are preferred for automotive applications due to the weight restrictions and also due to the presence of inherent voids that can enhance the sound absorption of these composites. The density of the reinforcing materials plays a crucial role in such lightweight composites. Milkweed is a unique natural cellulose fiber that has a completely hollow center and low density (0.9 g cm?3) unlike any other natural cellulose fiber. The low density of milkweed fibers will allow the incorporation of higher amounts of fiber per unit weight of a composite, which is expected to lead to lightweight composites with better properties. Polypropylene (PP) composites reinforced with milkweed fibers have much better flexural and tensile properties than similar PP composites reinforced with kenaf fibers. Milkweed fiber‐reinforced composites have much higher strength but are stiffer than kenaf fiber‐reinforced PP composites. Increasing the proportion of milkweed in the composites from 35 to 50% increases the flexural strength but decreases the tensile strength. The low density of milkweed fibers allows the incorporation of higher amounts of fibers per unit weight of the composites and hence provides better properties compared to composites reinforced with common cellulose fibers with relatively high density. This research shows that low‐density reinforcing materials can more efficiently reinforce lightweight composites. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Natural, cyanoethylated, and formaldehyde-crosslinked cotton cellulose has been grafted with methyl, ethyl, and n-butyl acrylate and methyl methacrylate monomers. Various physical properties such as density, moisture regain, birefringence, and mechanical properties were studied. The results indicate that the density and moisture regain of the grafted fibers are less than those of natural cotton. The birefringence of grafted fibers is also less than that of natural cotton. The variation in birefringence with percent graft-on depends on the monomer. Parameters such as orientation factor, helix angle, and refractive power of fibers were calculated from the birefringence data and the results discussed. It was observed that due to grafting of both natural and crosslinked cotton, there is a decrease in tensile strength, increase in elongation at break, and decrease in the initial modulus. Attempts are made to understand these changes in the properties of cotton in terms of the changes occurring in the fine structure of the fiber.  相似文献   

3.
The aim of this study was to investigate the utilization of milkweed fruit floss residues as a source for the isolation of cellulose. Cellulose was extracted by acidified sodium chlorite and sodium hydroxide treatments. Characterization of the pristine milkweed floss and extracted cellulose was performed by chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The extracted cellulose had mainly α-cellulose as the other components hemicellulose and lignin were significantly removed during cellulose extraction process. The FTIR spectra also indicated that the chemical treatments extensively removed hemicellulose and lignin from the pristine milkweed floss. SEM technique was used to investigate the surface morphology of the pristine milkweed floss and extracted cellulose. The intensity of the crystalline peak in the X-ray diffractograms of the extracted cellulose was higher than that of pristine milkweed. Further, the XRD results indicated a structural transformation of cellulose I (pristine milkweed) to cellulose II (extracted cellulose) because of the chemical treatments. The extracted cellulose, which is a high biomass, had better thermal stability than the pristine milkweed floss owing to removal of non-cellulosic components.  相似文献   

4.
This study aimed at investigating the reinforcement effect of milkweed (MW) floss, a smooth and homogeneous natural fiber with a wide hollow lumen, on bio-based polymer composites. First, MW floss was thoroughly characterized in terms of morphology, surface roughness, and tensile and thermal resistance. Then, MW floss was compared to flax fibers, one of the most widely used natural fibers in the composite industry. Subsequently, bio-based composites made of polylactic acid (PLA) and 1 wt% MW floss were produced by injection molding and compared to composites reinforced with 1 wt% of flax fibers. Finally, thermal behavior, mechanical properties, and impact resistance of composites were determined. Results showed that MW floss, with respect to flax fibers, exhibits lower tensile modulus, ultimate tensile strength, surface roughness as well as a shorter critical length. Nonetheless, and despite the lower intrinsic properties of MW floss, UTS and impact resistance of MW/PLA composites were found to be 60% and 15% higher than those of Flax/PLA composites, respectively. In addition, micrographs of MW/PLA interface revealed a lack of adhesion in MW/PLA, which should be overcome by surface treatment in upcoming work.  相似文献   

5.
Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and nonabrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers, and these draw backs become critical issue. Wood‐plastic composites (WPC) are a relatively new class of materials and one of the fastest growing sectors in the wood composites industry. Composites of wood in a thermoplastic matrix (wood–plastic composites) are considered a low maintenance solution to using wood in outdoor applications. WPCs are normally made from a mixture of wood fiber, thermoplastic, and small amounts of process and property modifiers through an extrusion process. In this study, Wood–plastic composites (WPC) are produce by adding a maleic anhydride modified low density polyethylene coupling agent to improve interfacial adhesion between the wood fiber and the plastic. Mixing is done with twin screw extruder. Subsequently, tensile strength, the modulus of elasticity, % elongation, hardness, Izod impact strength, melt flow index (MFI), and heat deflection temperature (HDT) are determined. Thermal transition temperatures and microstructure are determined with DSC and SEM, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Different titration methods were applied with the purpose to determine the dissociation properties of a natural (cotton) and regenerated (viscose, modal and lyocell) cellulose fibers. Potentiometric and conductometric titration were used to determine the content of acidic groups. pK values were determined by potentiometric titration. Polyelectrolyte adsorption was used for surface and total charge determination, and to obtain information about charge location and accessibility of charged groups. It was found that the average content of acidic groups is higher in cotton fibers than in regenerated fibers. The fiber charge of cotton is due to the dissociation of two type of acidic groups, one with pK ≈3.5 and the other with pK ≈5.5. In regenerated fibers there is only one type of acidic groups (pK ≈3.5). The pK value of the stronger acid is typical for carboxyl group in uronic acids. The polyelectrolyte adsorption indicates that most of the carboxyl groups are located in an inner region of all cellulose samples (cotton and regenerated fibers). It is concluded that titration methods are powerful tools for monitoring the content, strength, and distribution of acidic groups, as well as the total charge of natural and regenerated cellulose fibers. The three methods give similar results on all analyzed samples and show good repeatability. The results of investigation make it quite clear that combination of all titrations yields relevant information about content and strength of acidic groups in both natural and regenerated cellulose fibers used in the manufacture of textiles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3186–3195, 2004  相似文献   

7.
8.
Biodegradability of cellulose fabrics was evaluated by use of a soil burial test, an activated sewage sludge test, and an enzyme hydrolysis. Surface changes after biodegradation were observed by optical microscopy. From X‐ray diffraction analysis (XRD), changes in the crystallinities and the internal structures as a result of degradation were also investigated. It was shown that biodegradability decreased in the following order: rayon > cotton ? acetate. Rayon fibers, which have a low crystallinity and a low degree of orientation, showed the highest biodegradability in most cases. However, in spite of its low crystallinity, acetate fibers exhibited very low biodegradability, probably because of the presence of hydrophobic groups in its structure. On the other hand, linen showed an inconsistent behavior in that it had the highest biodegradability in the soil burial test, but a lower biodegradability than that of cotton in the activated sewage sludge test. XRD analysis revealed that there was a slight increase in the crystallinity of linen, cotton, and rayon fabrics at the initial stage, but a continuous decrease thereafter. From the correlation analysis, it was revealed that the biodegradability of cellulose fabrics was closely related to the moisture regain of the fibers, which reflects the hydrophilicity and internal structure of the fibers at the same time. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 248–253, 2004  相似文献   

9.
Natural fibers, such as Flax, Sisal, Hibiscus Sabdariffa, and Grewia optiva (GO) possess good reinforcing capability when properly compounded with polymers. These fibers are relatively inexpensive, easily available from renewable resources, and possess favorable values of specific strength and specific modulus. The mechanical performance of natural fiber‐reinforced polymers (FRPs) is often limited owing to a weak fiber‐ matrix interface. In contrast, urea–formaldehyde (UF) resins are well known to have a strong adhesion to most cellulose‐containing materials. This article deals with the synthesis of short G. optiva fiber‐reinforced UF polymer matrix‐based composites. G. optiva fiber‐reinforced UF composites processed by compression molding have been studied by evaluating their mechanical, physical, and chemical properties. This work reveals that mechanical properties such as: tensile strength, compressive strength, flexural strength, and wear resistance of the UF matrix increase up to 30% fiber loading and then decreases for higher loading when fibers are incorporated into the polymer matrix. Morphological and thermal studies of the matrix, fiber, and short FRP composites have also been carried out. The swelling, moisture absorbance, chemical resistance, and water uptake behavior of these composites have also been carried out at different intervals. The results obtained lay emphasis on the utilization of these fibers, as potential reinforcing materials in bio‐based polymer composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
An improved Single Fiber Tensile Test (SFTT) for the natural fibers was depicted. Natural fibers have irregular shape, and are not uniform along the fiber length and also from one fiber to another. Applying the conventional method, which determine the fiber cross‐section by measuring the fiber diameter using optical microscopy, will result in inaccurate properties of the natural fibers with large standard deviation (SD). In the proposed new SFTT method, an accurate cross‐section area could be obtained from the Scanning Electron Microscope observation of a flat and clear fractured end surface of carefully selected tensile‐tested fibers and calculated using imaging analysis. Applying this new approach, tensile strength of different types of flax fiber, including bast fiber, enzyme‐retted and water‐retted fiber provided SD of less than 11%, while those of these fibers determined by the conventional approach had SD of over 24%. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
麻纤维增强热塑性复合材料及其开发应用   总被引:2,自引:1,他引:1  
目前,环境材料已成为新材料领域中的一个新的研究方向.在环境材料中,天然纤维扮演着越来越重要的角色.高性能天然纤维及其复合材料的研究、开发与应用已成为全球研究热点.天然纤维如麻纤维具有许多突出的优点,如来源丰富、价格低廉、可再生、可降解、高比性能等,使其在某些领域成为玻璃纤维的优秀替代品.本文介绍了亚麻、大麻、黄麻、等麻类植物的生长种植情况,结构性能,麻纤维增强热塑性复合材料的成型工艺及其开发与应用.  相似文献   

12.
Bis(3‐triethoxysilylpropyl) tetrasulfide (TESPT) was used to improve the interfacial adhesion between cotton fiber and natural rubber (NR). The crosslink density, interfacial adhesion, mechanical properties, dynamic mechanical properties, and morphology of NR/cotton fiber composites were investigated. The composites with TESPT had higher crosslink density, better mechanical properties, higher initial modulus, and higher yield strength than the composites without TESPT because of the difference in interfacial adhesion. The results of an interfacial adhesion evaluation, the high storage modulus and low damping values of the composites with TESPT, and the coarse surfaces of the pullout fibers implied the enhancement of interfacial adhesion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Natural‐rubber‐based hybrid composites were prepared by the mixture of short cellulose fibers and silica of different relative contents with a 20‐phr filler loading with a laboratory two‐roll mill. The processability and tensile properties of the hybrid composites were analyzed. The tensile modulus improved, but the tensile strength and elongation at break decreased with increasing cellulose fiber content. The scorch safety improved with the addition of 5‐phr cellulose fiber in the composites. The Mooney viscosity significantly decreased with increasing cellulose fiber content. To modify the surface properties of the cellulose fiber and silica fillers, a silane coupling agent [bis(triethoxysilylpropyl)tetrasulfide, or Si69] was used. The effects of Si69 treatment on the processing and tensile properties of the hybrid composites were assessed. We found that the silane treatment of both fillers had significant benefits on the processability but little benefit on the rubber reinforcement. The strength of the treated hybrid composite was comparable to that of silica‐reinforced natural rubber. Furthermore, to investigate the filler surface modification and to determine the mixing effects, infrared spectroscopic and various microscopic techniques, respectively, were used. From these results, we concluded that the fillers were better dispersed in the composites, and the compatibility of the fillers and natural rubber increased with silane treatment. In conclusion, the hybridized use of short cellulose fibers from a renewable resource and silica with Si69 presented in this article offers practical benefits for the production of rubber‐based composites having greater processability and more environmental compatibility than conventional silica‐filler‐reinforced rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Polymer-based composite structures have advantages over many other materials. The most important advantage is the higher mechanical properties obtained from the composites when supported by fiber reinforcement. The mechanical and thermal properties of fiber-reinforced composite structures are affected by the amount of fibers in the structures, orientation of the fibers and fiber length. Silk and cotton fibers are used in many fields but especially in clothing and textiles. However, there is not enough research on their usage as reinforcement fibers in composite structures. Silk fibers as a textile material have better physical and mechanical properties than other animal fibers. The improvement of the mechanical and physical properties of the composite structures allows them to be used in many areas. From economical, technological and environmental points of view, the improvement of mechanical and physical properties of polymeric materials are receiving much attention in recent studies.

In this study, different application areas were chosen to evaluate the waste silk and waste cotton rather than classic textile applications. Waste silk and cotton and recycled polycarbonate polymer were mixed and as a result composite structures were obtained. Silk and cotton waste fiber dimensions were in between 1 mm, 2.5 mm and 5 mm. The recycled PC/silk and cotton wastes were mixed in the rates of 97%/3%. Mixtures were prepared by twin-screw extruder. Tensile strength, % elongation, yield strength, elasticity modulus, Izod impact strength, melt flow index (MFI), heat deflection temperature (HDT) and Vicat softening temperature properties were determined. To determine the materials' thermal transition and microstructure properties, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used.  相似文献   

15.
The aim of this investigation has been to use high performance thermoplastic matrices such as polyamides instead of the commonly used polyolefins to develop natural fiber composites for substituting glass fibers without renouncing to their mechanical properties. For this purpose, different natural fibers such as flax, jute, pure cellulose, and wood pulps have been melt compounded with different polyamides to analyze the effect of fiber content on mechanical properties. Fibers have not been treated as polyamides are less hydrophobic than polyolefins. Thermal behavior of the different fibers was determined by thermogravimetry to know the boundary for processing at high temperatures, since the melting points of the polyamides are much higher than those of polyolefins and this could lead to a higher degradation of the natural fibers. Rheological parameters were deduced by measuring torque values during the mixing process. Flexural and tensile modulus and strength of composites were analyzed, finding an increase in the mechanical properties compared with the unreinforced matrix that turns natural fibers into a considerable reinforcement offering a wealth of possibilities for industrial applications. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Complete conversion of the crystal form in cotton fibers to cellulose IV (cell IV cotton) was obtained by heat treatment of ethylamine-treated cotton cellulose in either saturated steam or formamide. Degradation of the fibers was not extensive during the conversion process; oxidative damage appeared to have been confined primarily to the accessible regions of the fibers. Examination by scanning electron microscopy indicated that the surface of the cell IV cotton was smoother than that of the same cotton with other crystal forms, namely, the starting cotton (cell I cotton), mercerized cotton (cell II cotton), and ethylamine-treated cotton (cell III cotton). Fiber accessibility increased in the order cell I cotton < cell III cotton ≤ cell IV cotton < cell II cotton. Using leveling-off degree of polymerization as the measure, it appeared that the lengths of the crystallites in cell I cotton were much higher than those in cell II, III, and IV cotton. The strength of cell IV cotton was comparable to that of cell I cotton even though its degree of polymerization was significantly lower. It is suggested that heat treatments in formamide have an annealing effect on cotton that results in increases of strength.  相似文献   

17.
Polymer-based composite structures have advantages over other materials. The most important advantage is the higher mechanical properties obtained from the composites when supported by fiber reinforcement. The mechanical and thermal properties of fiber-reinforced composite structures are affected by the amount of fibers in the structures, orientation of the fiber and fiber length. Silk and cotton fibers are used in many fields but especially in clothing and textiles. However, there is not enough research on their usage as reinforcement fibers in composite structures. Silk fibers as a textile material have better physical and mechanic properties than other animal fibers. It is very important that the improvement of the mechanical and physical properties of the composite structures allows them to be used in many areas. From economical, technological and environmental points of view, the improved the mechanical and physical properties of polymeric materials are receiving much attention in the recent studies.

In this study, various lengths (1 mm–2.5 mm and 5 mm) of waste silk and waste cotton fibers were added to high-density polyethylene (HDPE) and polypropylene (PP) polymer in the mixing ratios of (polymer:fiber) 100%:0%, 97%:3%, and 94%:6% to produce composite structures. On the other hand, known lengths (1–2.5–5 mm) of waste silk and waste cotton fibers were added to recycled polyamide-6 (PA6) and polycarbonate (PC) polymers in mixing quantities of 100%-0%, 97%-3%. A twin-screw extruder was employed for the production of composites. Tensile strength, % elongation, yield strength, elasticity modulus, Izod impact strength, melt flow index (MFI), heat deflection temperature (HDT), and Vicat softening temperature properties were determined. In order to determine the materials' thermal transition and microstructure properties, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. Results have shown that cotton and silk fibers behave differently than in the composite structure. Waste silk fiber composites give better mechanical properties than waste cotton fiber.  相似文献   

18.
为了了解莲纤维的化学性能,为开发莲纤维织物提供理论依据,通过分析比较纤维在不同浓度、不同温度的化学试剂中的溶解情况、色泽变化及一次拉伸断裂性能变化,研究了莲纤维的耐化学试剂性能,并与棉纤维作比较。结果表明:莲纤维对酸敏感性很强,即稳定性较差。酸对莲纤维作用的强弱程度取决于酸的种类、浓度、作用时间及温度。硫酸、盐酸这两大无机强酸对莲纤维破坏强烈,冰乙酸对莲纤维作用则较弱。莲纤维像棉纤维等天然纤维素纤维一样,在碱溶剂中稳定性好。但莲纤维对氧化剂的稳定性一般,抗氧化性与棉纤维相近,不同的氧化剂对莲纤维的氧化作用不同,所以必须严格控制工艺条件,以免莲纤维织物的强度受破坏。  相似文献   

19.
Chemisorption and crosslinking of cotton cellulose has been carried out with DMEU, DMPU, DHEU, and DMDHEU. Various physicochemical properties of resin-treated samples have been studied and the data subjected to a linear regression analysis. Using the techniques of liquid retention and optical microscopy it has been found that the chemisorbed cotton is characterized by a lower level of bound resin, greater amount of methylol HCHO, and higher swellability of structure in comparison to the crosslinked cotton. This difference of behavior between the two cottons is attributed to greater rigidification and a collapse of porous structure in crosslinked cotton as a result of catalytic activity at the curing temperature. For various resin-treated samples there exists a linear relationship between the strength and recovery characteristics of single fibers and those of fiber bundles. The losses in fiber strength and extensibility are found to be proportional to the level of bound resin in various samples. Crosslinked fibers show appreciably higher magnitudes of elastic recovery and bundle crease recovery than chemisorbed fibers. The significance of these results is discussed.  相似文献   

20.
新型碳纤维用原丝——高强高模Lyocell纤维纺丝工艺研究   总被引:5,自引:1,他引:5  
采用天然高相对分子质量纤维素脱脂棉为原料 ,制备了高强高模纤维素纤维 ( L yocell纤维 ) ,并用此作为碳纤维原丝 ,成功制得了强度优于粘胶基碳纤维的 L yocell基碳纤维。考察了高相对分子质量纤维素的溶解特点 ,纺丝工艺对 L yocell纤维聚集态及性能的影响 ,比较了 L yocell纤维和粘胶原丝的表面及截面形态。实验表明 :高相对分子质量纤维素溶解的静溶胀时间和温度对其溶解有明显的影响 ;纺丝过程中 ,大的气隙长度对提高纤维的性能有利 ;随着凝固浴中 N -甲基吗啉 N -氧化物( NMMO )的浓度增加 ,纤维的强度和模量增加 ,当其在凝固浴中的质量分数达到 10 %时 ,强度模量最大 ,浓度继续增加 ,纤维的力学性能开始下降 ;拉伸比增加 ,L yocell纤维的强度模量增加 ,当拉伸比大于 3.0时 ,纤维的性能略有下降  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号