首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The main goal of this contribution is to provide an improved mixed finite element for quasi‐incompressible linear elasticity. Based on a classical least‐squares formulation, a modified weak form with displacements and stresses as process variables is derived. This weak form is the basis for a finite element with an advanced fulfillment of the momentum balance and therefore with a better performance. For the continuous approximation of stresses and displacements on the triangular and tetrahedral elements, lowest‐order Raviart–Thomas and linear standard Lagrange interpolations can be used. It is shown that coercivity and continuity of the resulting asymmetric bilinear form could be established with respect to appropriate norms. Further on, details about the implementation of the least‐squares mixed finite elements are given and some numerical examples are presented in order to demonstrate the performance of the proposed formulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A finite element formulation for the bending of thin and thick plates based on least‐squares variational principles is presented. Finite element models for both the classical plate theory and the first‐order shear deformation plate theory (also known as the Kirchhoff and Mindlin plate theories, respectively) are considered. High‐order nodal expansions are used to construct the discrete finite element model based on the least‐squares formulation. Exponentially fast decay of the least‐squares functional, which is constructed using the L2 norms of the equations residuals, is verified for increasing order of the nodal expansions. Numerical examples for the bending of circular, rectangular and skew plates with various boundary conditions and plate thickness are presented to demonstrate the predictive capability and robustness of the new plate bending elements. Plate bending elements based on this formulation are shown to be insensitive to both shear‐locking and geometric distortions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
We present geometrically nonlinear formulations based on a mixed least‐squares finite element method. The L2‐norm minimization of the residuals of the given first‐order system of differential equations leads to a functional, which is a two‐field formulation dependent on displacements and stresses. Based thereon, we discuss and investigate two mixed formulations. Both approaches make use of the fact that the stress symmetry condition is not fulfilled a priori due to the row‐wise stress approximation with vector‐valued functions belonging to a Raviart‐Thomas space, which guarantees a conforming discretization of H(div). In general, the advantages of using the least‐squares finite element method lie, for example, in an a posteriori error estimator without additional costs or in the fact that the choice of the polynomial interpolation order is not restricted by the Ladyzhenskaya‐Babu?ka‐Brezzi condition (inf‐sup condition). We apply a hyperelastic material model with logarithmic deformation measures and investigate various benchmark problems, adaptive mesh refinement, computational costs, and accuracy.  相似文献   

4.
Optimal hybrid stress quadrilaterals can be obtained by adopting appropriate stresses and displacements, and satisfying the energy compatibility condition is shown to be an ultimate key to obtaining optimal stress modes. By using compatible isoparametric bilinear (Q4) displacements and 5‐parameter energy compatible stresses of the combined hybrid finite element CH(0‐1), a robust 4‐node plane stress element ECQ4 is derived. Equivalence to another hybrid stress element LQ6 with 9‐parameter complete linear stresses based on a modified Hellinger–Reissner principle is established. A convergence analysis is given and numerical experiments show that elements ECQ4/LQ6 have high performance, i.e. are accurate at coarse meshes, insensitive to mesh distortions and free from locking. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
For the analysis of thick laminated composite structures this paper proposes a partial mixed 3-D element. The variational principle of this new element is obtained by modifying the Hellinger–Reissner principle. The functional of the present stationary principle is constructed by treating three displacements (u, v, w) and two transverse shear stresses (τxz, τyz) as independent of each other. Hence the nodal variables of the present mixed element contain three displacements and two transverse shear stresses. The other stresses (σx, σy, τxy, σz) are computed from the assumed displacement field and nodal displacement field and nodal displacements. The present element can satisfy the requirements of (1)transverse shear stress continuity between laminate layers and (2)boundary conditions of free transverse shear stresses on the top and bottom surfaces. These requirements are violated by conventional displacement finite elements. Since the stiffness matrix of the present element is formulated by combining a displacement model and a mixed model, it is definite, rather than indefinite as for the conventional mixed elements. Also, these two transverse shear stresses are part of the solution variables and are solved directly together with displacements. Examples are presented to demonstrate the accuracy and efficiency of this proposed partial mixed 3-D element in the analysis of thick laminated composite structures.  相似文献   

6.
Three‐dimensional hybrid‐Trefftz stress finite elements for plates and shells are proposed. Two independent fields are approximated: stresses within the element and displacement on their boundary. The required stress field derived from the Papkovitch‐Neuber solution of the Navier equation, which a priori satisfies the Trefftz constraint, is generated using homogeneous harmonic polynomials. Restriction on the polynomial degree in the coordinate measured along the thickness direction is imposed to reduce the number of independent terms. Explicit expressions of the corresponding independent polynomials are listed up to the fifth order. Illustrative applications to evaluate displacements and stresses are conducted by hexahedral hybrid‐Trefftz stress element models. The hierarchical p‐ and h‐refinement strategy are exploited in the numerical tests.  相似文献   

7.
It has been well‐established that the non‐singular T‐stress provides a first‐order estimate of geometry and loading mode (e.g. tension versus bending) effects on elastic–plastic crack‐front field under mode I loading conditions. The objective of this paper is to exam the T‐stress effect on three‐dimensional (3D) crack‐front fields under mixed‐mode (modes I and II) loading. To this end, detailed 3D small strain, elastic–plastic simulations are carried out using a 3D boundary layer (small‐scale yielding) formulation. Characteristics of near crack‐front fields are investigated for a wide range of T‐stresses (T/σ0 = ?0.8, ?0.4, 0.0, 0.4, 0.8). The plastic zones and thickness and angular and radial variations of the stresses are studied, corresponding to two values of the remote elastic mixity parameters Me = 0.3 and 0.7, under both low and high levels of applied loads. It is found that different T‐stresses have a significant effect on the plastic zones size and shapes, regardless of the mode mixity and load level. The thickness, angular and radial distributions of stresses are also affected markedly by T‐stress. It is important to include these effects when investigating the mixed‐mode ductile fracture failure process in thin‐walled structural components.  相似文献   

8.
This contribution investigates the performance of a least‐squares finite element method based on non‐uniform rational B‐splines (NURBS) basis functions. The least‐squares functional is formulated directly in terms of the strong form of the governing equations and boundary conditions. Thus, the introduction of auxiliary variables is avoided, but the order of the basis functions must be higher or equal to the order of the highest spatial derivatives. The methodology is applied to the incompressible Navier–Stokes equations and to linear as well as nonlinear elastic solid mechanics. The numerical examples presented feature convective effects and incompressible or nearly incompressible material. The numerical results, which are obtained with equal‐order interpolation and without any stabilisation techniques, are smooth and accurate. It is shown that for p and h refinement, the theoretical rates of convergence are achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A class of parallel multiple‐front solution algorithms is developed for solving linear systems arising from discretization of boundary value problems and evolution problems. The basic substructuring approach and frontal algorithm on each subdomain are first modified to ensure stable factorization in situations where ill‐conditioning may occur due to differing material properties or the use of high degree finite elements (p methods). Next, the method is implemented on distributed‐memory multiprocessor systems with the final reduced (small) Schur complement problem solved on a single processor. A novel algorithm that implements a recursive partitioning approach on the subdomain interfaces is then developed. Both algorithms are implemented and compared in a least‐squares finite‐element scheme for viscous incompressible flow computation using h‐ and p‐finite element schemes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Concerning composites plate theories and FEM (Finite Element Method) applications this paper presents some multilayered plate elements which meet computational requirements and include both the zig-zag distribution along the thickness co-ordinate of the in-plane displacements and the interlaminar continuity (equilibrium) for the transverse shear stresses. This is viewed as the extension to multilayered structures of well-known C0 Reissner–Mindlin finite plate elements. Two different fields along the plate thickness co-ordinate are assumed for the transverse shear stresses and for the displacements, respectively. In order to eliminate stress unknowns, reference is made to a Reissner mixed variational theorem. Sample tests have shown that the proposed elements, named RMZC, numerically work as the standard Reissner–Mindlin ones. Furthermore, comparisons with other results related to available higher-order shear deformation theories and to three-dimensional solutions have demonstrated the good performance of the RMZC elements.  相似文献   

11.
A Galerkin/least‐squares (GLS) finite element formulation for problem of consolidation of fully saturated two‐phase media is presented. The elimination of spurious pressure oscillations appearing at the early stage of consolidation for standard Galerkin finite elements with equal interpolation order for both displacements and pressures is the goal of the approach. It will be shown that the least‐squares term, based exclusively on the residuum of the fluid flow continuity equation, added to the standard Galerkin formulation enhances its stability and can fully eliminate pressure oscillations. A reasonably simple framework designed for derivation of one‐dimensional as well as multi‐dimensional estimates of the stabilization factor is proposed and then verified. The formulation is validated on one‐dimensional and then on two‐dimensional, linear and non‐linear test problems. The effect of the fluid incompressibility as well as compressibility will be taken into account and investigated. Copyright © 2001 John Wiley & Sons Ltd.  相似文献   

12.
A flexible computational procedure for solving 3D linear elastic structural mechanics problems is presented that currently uses three forms of approximation function (natural neighbour, moving least squares—using a new nearest neighbour weight function—and Lagrange polynomial) and three types of integration grids to reproduce the natural element method and the finite element method. The addition of more approximation functions, which is not difficult given the structure of the code, will allow reproduction of other popular meshless methods. Results are presented that demonstrate the ability of the first‐order meshless approximations to capture solutions more accurately than first‐order finite elements. Also, the quality of integration for the three types of integration grids is compared. The concept of a region is introduced, which allows the splitting of a domain into different sections, each with its own type of approximation function and spatial integration scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Multiple undersampled images of a scene are often obtained by using a charge‐coupled device (CCD) detector array of sensors that are shifted relative to each other by subpixel displacements. This geometry of sensors, where each sensor has a subarray of sensing elements of suitable size, has been popular in the task of attaining spatial resolution enhancement from the acquired low‐resolution degraded images that comprise the set of observations. With the objective of improving the performance of the signal processing algorithms in the presence of the ubiquitous perturbation errors of displacements around the ideal subpixel locations (because of imperfections in fabrication), in addition to noisy observation, the errors‐in‐variables or the total least‐squares method is used in this paper. A regularized constrained total least‐squares (RCTLS) solution to the problem is given, which requires the minimization of a nonconvex and nonlinear cost functional. Simulations indicate that the choice of the regularization parameter influences significantly the quality of the solution. The L‐curve method is used to select the theoretically optimum value of the regularization parameter instead of the unsound but expedient trial‐and‐error approach. The expected superiority of this RCTLS approach over the conventional least‐squares theory‐based algorithm is substantiated by example. © 2002 John Wiley & Sons, Inc. Int J Imaging Syst Technol 12, 35–42, 2002  相似文献   

14.
This paper presents numerical evaluations related to the multilayered plate elements which were proposed in the companion paper (Part 1). Two‐dimensional modellings with linear and higher‐order (up to fourth order) expansion in the z‐plate/layer thickness direction have been implemented for both displacements and transverse stresses. Layer‐wise as well as equivalent single‐layer modellings are considered on both frameworks of the principle of virtual displacements and Reissner mixed variational theorem. Such a variety has led to the implementation of 22 plate theories. As far as finite element approximation is concerned, three quadrilaters have been considered (four‐, eight‐ and nine‐noded plate elements). As a result, 22×3 different finite plate elements have been compared in the present analysis. The automatic procedure described in Part 1, which made extensive use of indicial notations, has herein been referred to in the considered computer implementations. An assessment has been made as far as convergence rates, numerical integrations and comparison to correspondent closed‐form solutions are concerned. Extensive comparison to early and recently available results has been made for sample problems related to laminated and sandwich structures. Classical formulations, full mixed, hybrid, as well as three‐dimensional solutions have been considered in such a comparison. Numerical substantiation of the importance of the fulfilment of zig‐zag effects and interlaminar equilibria is given. The superiority of RMVT formulated finite elements over those related to PVD has been concluded. Two test cases are proposed as ‘desk‐beds’ to establish the accuracy of the several theories. Results related to all the developed theories are presented for the first test case. The second test case, which is related to sandwich plates, restricts the comparison to the most significant implemented finite elements. It is proposed to refer to these test cases to establish the accuracy of existing or new higher‐order, refined or improved finite elements for multilayered plate analyses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A high‐order layerwise finite element methodology is presented, which enables prediction of the damped dynamic characteristics of thick composite and sandwich composite plates. The through‐thickness displacement field in each discrete layer of the laminate includes quadratic and cubic polynomial distributions of the in‐plane displacements, in addition to the linear approximations assumed by linear layerwise theories. Stiffness, mass and damping matrices are formulated from ply to structural level. Interlaminar shear stress compatibility conditions are imposed on the discrete layer matrices, leading to both size reduction and prediction of interlaminar shear stresses at the laminate interfaces. The C1 continuous finite element implemented yields an element damping matrix in addition to element stiffness and mass matrices. Application cases include thick [0/90/0], [±θ]S and [±θ] composite plates with interlaminar damping layers and sandwich plates with composite faces and foam core. In the latter case, modal frequencies and damping were also experimentally determined and compared with the finite element predictions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A finite element implementation is reported of the Fleck–Hutchinson phenomenological strain gradient theory. This theory fits within the Toupin–Mindlin framework and deals with first‐order strain gradients and the associated work‐conjugate higher‐order stresses. In conventional displacement‐based approaches, the interpolation of displacement requires C1‐continuity in order to ensure convergence of the finite element procedure for higher‐order theories. Mixed‐type finite elements are developed herein for the Fleck–Hutchinson theory; these elements use standard C0‐continuous shape functions and can achieve the same convergence as C1 elements. These C0 elements use displacements and displacement gradients as nodal degrees of freedom. Kinematic constraints between displacement gradients are enforced via the Lagrange multiplier method. The elements developed all pass a patch test. The resulting finite element scheme is used to solve some representative linear elastic boundary value problems and the comparative accuracy of various types of element is evaluated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The displacements of three‐dimensional linearly elastic plate domains can be expanded as a compound power‐series asymptotics, when the thickness parameter ε tends to zero. The leading term u 0 in this expansion is the well‐known Kirchhoff–Love displacement field, which is the solution to the limit case when ε→0. Herein, we focus our discussion on plate domains with either clamped or free lateral boundary conditions, and characterize the loading conditions for which the leading term vanishes. In these situations the first non‐zero term u k in the expansion appears for k=2, 3 or 4 and is denoted as higher‐order response of order 2,3 or 4, respectively. We provide herein explicit loading conditions under which higher order responses in three‐dimensional plate structures are visible, and demonstrate the mathematical analysis by numerical simulation using the p‐version finite element method. Owing to the need for highly accurate results and ‘needle elements’ (having extremely large aspect ratio up to 10000), a p‐version finite element analysis is mandatory for obtaining reliable and highly accurate results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An evaluation procedure of exact static stiffness matrices for curved beams with non‐symmetric thin‐walled cross section are rigorously presented for the static analysis. Higher‐order differential equations for a uniform curved beam element are first transformed into a set of the first‐order simultaneous ordinary differential equations by introducing 14 displacement parameters where displacement modes corresponding to zero eigenvalues are suitably taken into account. This numerical technique is then accomplished via a generalized linear eigenvalue problem with non‐symmetric matrices. Next, the displacement functions of displacement parameters are exactly calculated by determining general solutions of simultaneous non‐homogeneous differential equations. Finally an exact stiffness matrix is evaluated using force–deformation relationships. In order to demonstrate the validity and effectiveness of this method, displacements and normal stresses of cantilever thin‐walled curved beams subjected to tip loads are evaluated and compared with those by thin‐walled curved beam elements as well as shell elements. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper a mixed least squares finite element method for solving problems in linear elasticity is proposed. The developed numerical technique allows the use of separate unknowns for displacements and stresses, discontinuous interpolation functions for displacements, and the resulting linear system has a symmetric and positive definite coefficient matrix. The approximate solution of the linear elasticity problem is obtained by minimization of a least squares functional based on the constitutive equations and equations of equilibrium. The proposed method is implemented in an original computer code written in C programming language. Its performance is tested on classical examples from theory of elasticity with well-known exact analytical solutions. Results from the implementation of a constant displacement-bilinear stress element and bilinear displacement-bilinear stress element are discussed.  相似文献   

20.
Full‐field three‐dimensional (3D) numerical analyses was performed to determine in‐plane and out‐of‐plane constraint effect on crack‐front stress fields under creep conditions of finite thickness boundary layer models and different specimen geometries. Several parameters are used to characterize constraint effects including the non‐singular T‐stresses, the local triaxiality parameter, the Tz ‐factor of the stress‐state in a 3D cracked body and the second‐order‐term amplitude factor. The constraint parameters are determined for centre‐cracked plate, three‐point bend specimen and compact tension specimen. Discrepancies in constraint parameter distribution on the line of crack extension and along crack front depending on the thickness of the specimens have been observed under different loading conditions of creeping power law hardening material for various configurations of specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号