首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generating matching meshes for finite element analysis is not always a convenient choice, for instance, in cases where the location of the boundary is not known a priori or when the boundary has a complex shape. In such cases, enriched finite element methods can be used to describe the geometric features independently from the mesh. The Discontinuity-Enriched Finite Element Method (DE-FEM) was recently proposed for solving problems with both weak and strong discontinuities within the computational domain. In this paper, we extend DE-FEM to treat fictitious domain problems, where the mesh-independent boundaries might either describe a discontinuity within the object, or the boundary of the object itself. These boundaries might be given by an explicit expression or an implicit level set. We demonstrate the main assets of DE-FEM as an immersed method by means of a number of numerical examples; we show that the method is not only stable and optimally convergent but, most importantly, that essential boundary conditions can be prescribed strongly.  相似文献   

2.
This paper is devoted to the imposition of Dirichlet‐type conditions within the extended finite element method (X‐FEM). This method allows one to easily model surfaces of discontinuity or domain boundaries on a mesh not necessarily conforming to these surfaces. Imposing Neumann boundary conditions on boundaries running through the elements is straightforward and does preserve the optimal rate of convergence of the background mesh (observed numerically in earlier papers). On the contrary, much less work has been devoted to Dirichlet boundary conditions for the X‐FEM (or the limiting case of stiff boundary conditions). In this paper, we introduce a strategy to impose Dirichlet boundary conditions while preserving the optimal rate of convergence. The key aspect is the construction of the correct Lagrange multiplier space on the boundary. As an application, we suggest to use this new approach to impose precisely zero pressure on the moving resin front in resin transfer moulding (RTM) process while avoiding remeshing. The case of inner conditions is also discussed as well as two important practical cases: material interfaces and phase‐transformation front capturing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Interpolation functions in the immersed boundary and finite element methods   总被引:1,自引:1,他引:0  
In this paper, we review the existing interpolation functions and introduce a finite element interpolation function to be used in the immersed boundary and finite element methods. This straightforward finite element interpolation function for unstructured grids enables us to obtain a sharper interface that yields more accurate interfacial solutions. The solution accuracy is compared with the existing interpolation functions such as the discretized Dirac delta function and the reproducing kernel interpolation function. The finite element shape function is easy to implement and it naturally satisfies the reproducing condition. They are interpolated through only one element layer instead of smearing to several elements. A pressure jump is clearly captured at the fluid–solid interface. Two example problems are studied and results are compared with other numerical methods. A convergence test is thoroughly conducted for the independent fluid and solid meshes in a fluid–structure interaction system. The required mesh size ratio between the fluid and solid domains is obtained.  相似文献   

5.
There is increasing interest in the material point method (MPM) as a means of modelling solid mechanics problems in which very large deformations occur, e.g. in the study of landslides and metal forming; however, some aspects vital to wider use of the method have to date been ignored, in particular methods for imposing essential boundary conditions in the case where the problem domain boundary does not coincide with the background grid element edges. In this paper, we develop a simple procedure originally devised for standard finite elements for the imposition of essential boundary conditions, for the MPM, expanding its capabilities to model boundaries of any inclination. To the authors' knowledge, this is the first time that a method has been proposed that allows arbitrary Dirichlet boundary conditions (zero and nonzero values at any inclination) to be imposed in the MPM. The method presented in this paper is different from other MPM boundary approximation approaches, in that (1) the boundaries are independent of the background mesh, (2) artificially stiff regions of material points are avoided, and (3) the method does not rely on mirroring of the problem domain to impose symmetry. The main contribution of this work is equally applicable to standard finite elements and the MPM.  相似文献   

6.
The use of Cartesian meshes independent of the geometry has some advantages over the traditional meshes used in the finite element method. The main advantage is that their use together with an appropriate hierarchical data structure reduces the computational cost of the finite element analysis. This improvement is based on the substitution of the traditional mesh generation process by an optimized procedure for intersecting the Cartesian mesh with the boundary of the domain and the use efficient solvers based on the hierarchical data structure. One major difficulty associated to the use of Cartesian grids is the fact that the mesh nodes do not, in general, lie over the boundary of the domain, increasing the difficulty to impose Dirichlet boundary conditions. In this paper, Dirichlet boundary conditions are imposed by means of the Lagrange multipliers technique. A new functional has been added to the initial formulation of the problem that has the effect of stabilizing the problem. The technique here presented allows for a simple definition of the Lagrange multipliers field that even allow us to directly condense the degrees of freedom of the Lagrange multipliers at element level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an examination of moving‐boundary temperature control problems. With a moving‐boundary problem, a finite‐element mesh is generated at each time step to express the position of the boundary. On the other hand, if an overlapped domain, that is, comprising foreground and background meshes, is prepared, the moving boundary problem can be solved without mesh generation at each time step by using the fictitious domain method. In this study, boundary temperature control problems with a moving boundary are formulated using the finite element, the adjoint variable, and the fictitious domain methods, and several numerical experiments are carried out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We consider the efficient numerical solution of the Helmholtz equation in a rectangular domain with a perfectly matched layer (PML) or an absorbing boundary condition (ABC). Standard bilinear (trilinear) finite‐element discretization on an orthogonal mesh leads to a separable system of linear equations for which we describe a cyclic reduction‐type fast direct solver. We present numerical studies to estimate the reflection of waves caused by an absorbing boundary and a PML, and we optimize certain parameters of the layer to minimize the reflection. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes a practical implementation of the Galerkin finite element procedure for solving systems of parabolic partial differential equations with non-linear boundary conditions. This technique consists of finding an approximation in the form of a finite sum of cubic B-splines, which yield high-order accurate results, and consequently, solutions can be developed with remarkable precision and speed up to the steady state region where conventional finite difference methods often fail. In addition, the choice of mesh width and nodal spacing can be automatically determined for a predictor-corrector routine, thereby relieving the engineer of a great deal of ‘guess work’ that is normally characteristic of solving such problems.  相似文献   

10.
Obtaining very high-order accurate solutions in curved domains is a challenging task as the accuracy of discretization methods may dramatically reduce without an appropriate treatment of boundary conditions. The classical techniques to preserve the nominal convergence order of accuracy, proposed in the context of finite element and finite volume methods, rely on curved mesh elements, which fit curved boundaries. Such techniques often demand sophisticated meshing algorithms, cumbersome quadrature rules for integration, and complex nonlinear transformations to map the curved mesh elements onto the reference polygonal ones. In this regard, the reconstruction for off-site data method, proposed in the work of Costa et al, provides very high-order accurate polynomial reconstructions on arbitrary smooth curved boundaries, enabling integration of the governing equations on polygonal mesh elements, and therefore, avoiding the use of complex integration quadrature rules or nonlinear transformations. The method was introduced for Dirichlet boundary conditions and the present article proposes an extension for general boundary conditions, which represents an important advance for real context applications. A generic framework to compute polynomial reconstructions is also developed based on the least-squares method, which handles general constraints and further improves the algorithm. The proposed methods are applied to solve the convection-diffusion equation with a finite volume discretization in unstructured meshes. A comprehensive numerical benchmark test suite is provided to verify and assess the accuracy, convergence orders, robustness, and efficiency, which proves that boundary conditions on arbitrary smooth curved boundaries are properly fulfilled and the nominal very high-order convergence orders are effectively achieved.  相似文献   

11.
The theory of boundary eigensolutions for boundary value problems is applied to the development of computational mechanics formulations. The boundary element and finite element methods that result are consistent with the mathematical theory of boundary value problems. Although the approach is quite general, this paper focuses on potential problems. For these problems, both methods employ potential and boundary flux as primary variables. Convergence characteristics of the new flux‐oriented finite element method are also developed. By utilizing suitable boundary weight functions, the formulations are written exclusively in terms of bounded quantities, even for non‐smooth problems involving notches, cracks and mixed boundary conditions. The results of numerical experiments indicate that the algorithms perform in concert with the underlying theory and thus provide an attractive alternative to existing approaches. Beyond this, the approach developed here provides a new perspective from which to view computational mechanics, and can be used to obtain a better understanding of boundary element and finite element methods. Comparisons with closed‐form boundary eigensolutions are also presented in order to provide a means for assessing the numerical methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
In the finite element method (FEM), a mesh is used for representing the geometry of the analysis and for representing the test and trial functions by piece‐wise interpolation. Recently, analysis techniques that use structured grids have been developed to avoid the need for a conforming mesh. The boundaries of the analysis domain are represented using implicit equations while a structured grid is used to interpolate functions. Such a method for analysis using structured grids is presented here in which the analysis domain is constructed by Boolean combination of step functions. Implicit equations of the boundary are used in the construction of trial and test functions such that essential boundary conditions are guaranteed to be satisfied. Furthermore, these functions are constructed such that internal elements, through which no boundary passes, have the same stiffness matrix. This approach has been applied to solve linear elastostatic problems and the results are compared with analytical and finite element analysis solutions to show that the method gives solutions that are similar to the FEM in quality but is less computationally expensive for dense mesh/grid and avoids the need for a conforming mesh. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we introduce finite element methods of Petrov–Galerkin type for the approximate solution of two-point boundary-value problems for singularly perturbed, second-order, ordinary, linear differential equations. We write down Petrov–Galerkin methods on a uniform mesh which have asymptotic error estimates, as the mesh size tends to zero, whose magnitude is independent of the singular perturbation parameter. This is in marked contrast to standard finite element methods which do not possess such a property on a uniform mesh. For these, typically, the error on a fixed uniform mesh blows up as the singular perturbation parameter tends to zero. This robust behaviour of these Petrov–Galerkin methods for singularly perturbed problems is achieved by choosing trial spaces of standard piecewise polynomial type, while the test spaces consist of hinged piecewise polynomials. We consider self-adjoint and non-self-adjoint two-point boundary-value problems with Dirichlet boundary conditions. We define hinged test spaces for both types of problem. We then introduce a number of sample problems and we present numerical solutions of these sample problems using a Petrov–Galerkin method with the appropriate hinged test space.  相似文献   

14.
In engineering, most governing partial differential equations for physical systems are solved using finite element or finite difference methods. Applications of interval methods have been explored in finite element analysis to model systems with parametric uncertainties and to account for the impact of truncation error on the solutions. An alternative to the finite element method is the boundary element method. The boundary element method uses singular functions to reduce the dimension of the domain by transforming the domain variables to boundary variables. In this work, interval methods are developed to enhance the boundary element method for considering causes of imprecision such as uncertain boundary conditions, truncation error, and integration error. Examples are presented to illustrate the effectiveness and potential of an interval approach in the boundary element method.  相似文献   

15.
The efficiency and computational accuracy of the boundary element and finite element methods are compared in this paper. This comparison is carried out by employing different degrees of mesh refinement to solve a specific illustrative problem by the two methods.  相似文献   

16.
Global and element residuals are introduced to determine a posteriori, computable, error bounds for finite element computations on a given mesh. The element residuals provide a criterion for determining where a finite element mesh requires refinement. This indicator is implemented in an algorithm in a finite element research program. There it is utilized to automatically refine the mesh for sample two-point problems exhibiting boundary layer and interior layer solutions. Results for both linear and nonlinear problems are presented. An important aspect of this investigation concerns the use of adaptive refinement in conjunction with iterative methods for system solution. As the mesh is being enriched through the refinement process, the solution on a given mesh provides an accurate starting iterate for the next mesh, and so on. A wide range of iterative methods are examined in a feasibility study and strategies for interweaving refinement and iteration are compared.  相似文献   

17.
Boundary integral equation methods are presented for the solution of some two-dimensional phase change problems. Convection may enter through boundary conditions, but cannot be considered within phase boundaries. A general formulation based on space-time Green's functions is developed using the complete heat equation, followed by a simpler formulation using the Laplace equation. The latter is pursued and applied in detail. An elementary, noniterative system is constructed, featuring linear interpolation over elements on a polygonal boundary. Nodal values of the temperature gradient normal to a phase change boundary are produced directly in the numerical solution. The system performs well against basic analytical solutions, using these values in the interphase jump condition, with the simplest formulation of the surface normal at boundary vertices. Because the discretized surface changes automatically to fit the scale of the problem, the method appears to offer many of the advantages of moving mesh finite element methods. However, it only requires the manipulation of a surface mesh and solution for surface variables. In some applications, coarse meshes and very large time steps may be used, relative to those which would be required by fixed grid domain methods. Computations are also compared to original lab data, describing two-dimensional soil freezing with a time-dependent boundary condition. Agreement between simulated and measured histories is good.  相似文献   

18.
Summary The boundary and the finite element formulations for the equations of elasticity are presented and applied to the problem of propagation of transient SH-waves in dipping layers overlying a half-space. When the finite element formulation is used, appropriate boundary conditions are imposed on the additional boundary dividing the half-space into a finite and an infinite region. These conditions ensure the transmission of waves across this boundary. When the boundary element method is applied, it is necessary to satisfy the radiation conditions. Theoretical seismograms for the displacement on the surface of the half-space are presented. They show that, for a specific case, the agreement between the two methods is satisfactory. The results can be compared with those found by the exact method of generalized rays in order to check the validity of the finite and the boundary element methods for the specific problem studied in this paper.  相似文献   

19.
This contribution presents a novel approach to structural shape optimization that relies on an embedding domain discretization technique. The evolving shape design is embedded within a uniform finite element background mesh which is then used for the solution of the physical state problem throughout the course of the optimization. We consider a boundary tracking procedure based on adaptive mesh refinement to separate between interior elements, exterior elements, and elements intersected by the physical domain boundary. A selective domain integration procedure is employed to account for the geometric mismatch between the uniform embedding domain discretization and the evolving structural component. Thereby, we avoid the need to provide a finite element mesh that conforms to the structural component for every design iteration, as it is the case for a standard Lagrangian approach to structural shape optimization. Still, we adopt an explicit shape parametrization that allows for a direct manipulation of boundary vertices for the design evolution process. In order to avoid irregular and impracticable design updates, we consider a geometric regularization technique to render feasible descent directions for the course of the optimization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Several analysis techniques such as extended finite element method (X‐FEM) have been developed recently, which use structured grid for the analysis. Implicit boundary method uses implicit equations of the boundary to apply boundary conditions in X‐FEM framework using structured grids. Solution structures for test and trial functions are constructed using implicit equations such that the boundary conditions are satisfied even if there are no nodes on the boundary. In this paper, this method is applied for analysis using uniform B‐spline basis defined over a structured grid. Solution structures that are C1 or C2 continuous throughout the analysis domain can be constructed using B‐spline basis functions. As a structured grid does not conform to the geometry of the analysis domain, the boundaries of the analysis domain are defined independently using equations of the boundary curves/surfaces. Compared with conforming mesh, it is easier to generate structured grids that overlap the geometry and the elements in the grid are regular shaped and undistorted. Numerical examples are presented to demonstrate the performance of these B‐spline elements. The results are compared with analytical solutions as well as with traditional finite element solutions. Convergence studies for several examples show that B‐spline elements provide accurate solutions with fewer elements and nodes compared with traditional FEM. They also provide continuous stress and strain in the analysis domain, thus eliminating the need for smoothing stress/strain results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号