首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
An in‐line method was applied to determine local residence time distribution (RTD) at two places in a completely filled corotating twin screw extruder. Axial mixing effects of different types of elements were evaluated. Paddles +90° induced flow patterns that appear to be circular, both upstream and downstream, whereas paddles ?30° induced flow patterns that appear to be circular and mainly upstream. Transport and single‐lead elements induced backflow. The results could be explained from pressure differences and direction of drag flow in the elements. All elements were characterized using an equivalent additional mixing length λ, dependent on the type of element and its position in the extruder, which may be practically useful for extrusion design. POLYM. ENG. SCI. 45:271–278, 2005. © 2005 Society of Plastics Engineers.  相似文献   

2.
A mixing limited interfacial reaction between polymer tracers was used to directly measure the distributive mixing performance of a co‐rotating twin screw extruder during melt‐melt blending of polypropylene. The reaction between the polymer tracers, which are low molecular weight succinic anhydride and primary amine terminally functionalized polymer chains, was followed using Fourier‐Transform Infrared Spectroscopy (FT‐IR). Experiments were completed to determine the effects of flow rate, screw speed, and kneading block design on the distributive mixing performance and the residence time distribution (RTD). The only RTD variable that was significantly affected by the experimental factors was the average residence time. Distributive mixing with neutral and reverse kneading blocks was controlled by the average residence time, the fully filled volume, and the shear rate. Conversely, the mixing performance of a forward kneading block did not follow the same trends.  相似文献   

3.
Local residence time and distributive mixing were measured in conveying sections and kneading blocks of a twin screw‐extruder. The residence time measurements were completed using carbon black as the tracer and an infrared temperature probe to detect the temperature decrease caused by the changing surface emissivity. The validity of this experimental technique was extensively evaluated. A mixing limited interfacial reaction between polymer tracers was used to directly measure the distributive mixing in the twin‐screw extruder. Possible relationships between mixing and residence time in the sections of the twin‐screw extruder were investigated by combining these two measurements. Distributive mixing in conveying sections was related to the local average residence time and the fill. In contrast, distributive mixing in kneading blocks was related to the local average number of screw revolutions experienced by the polymer. Forward stagger kneading discs achieved the greatest amount of distributive mixing, which was attributed to a combination of local stagnant flow regions and more frequent interfacial reorientation.  相似文献   

4.
Polypropylene/nano‐calcium carbonate (PP/nano‐CaCO3) composites were prepared by using an intermeshing, co‐rotating twin‐screw extruder. Two different screw configurations, denoted by screws A and B, respectively, were employed. The former provided high dispersive mixing and the later provided high dispersive and distributive mixing. Effect of mixing type on microstructure and rheologic development of nanocomposites was investigated by taking samples from four locations along screws A and B. Transmission electron microscopy results show that in the sample at the exit of extruder, the percentage of nano‐CaCO3 particles with the equivalent diameter lower than 100 nm along screws A and B is 66.5 and 79.0%. respectively. Moreover, for screw B, the number‐averaged diameter at four sampling locations is smaller than that for screw A. This means that the distributive mixing, provided by screw B, favors the size decrease of nano‐CaCO3 in the PP matrix. In addition, rheologic results show that the decrease of complex viscosity for the nanocomposites is deeply related to turbine mixing elements, which provides distributive mixing. The online melt shear viscosity of the nanocomposite at the exit of extruder prepared by screw B is lower than that of pure PP. This is related to the dispersion of nano‐CaCO3 in PP matrix. Finally, the relationship between rheologic properties and microstructure was analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Twin‐screw extruders offer improved control of the residence time distribution (RTD) and mixing in materials such as plastics, rubber and food. Based on the flow and the heat transfer characteristics obtained for a self‐wiping, co‐rotating twinscrew extruder, the residence time and chemical reaction are studied by tracking the particles. For normally starve‐fed twin‐screw extruders, the length of the completely filled section is calculated as function of the process variables using the coupling of the flow with the die. With a model of the solid conveying section, the RTD for the whole extruder is calculated for corn meal at different screw speeds and flow rates. The calculated variation of RTD with the screw speed and the flow rate yields good agreement with observations from many experiments. The variation of the fully filled section length, chemical conversion and mixing effectiveness are also obtained under different operation conditions. Most of the results are in qualitative agreement with experimental results and may be used as guidelines for extruder design and determination of optimal operating conditions.  相似文献   

6.
The distributive mixing efficiency of a twin‐screw extruder kneading zone consisting of eccentric disc elements was measured using an online video technique. Both co‐ and counter‐rotation were examined. Viscous Newtonian silicone oil was used as model liquid and black iron oxide pigment served as tracer substance. Under isoviscous, creeping flow and non‐diffusive conditions and for a fixed flow rate ratio of the colored and uncolored feed streams, the intensity of segregation S is only a function of the kinematic parameter Λ (the ratio of the imposed extruder throughput and the throughput at zero axial pressure gradient). The measured dependency of S on Λ is in qualitative agreement with the results of Pawlowski for a single screw extruder. The data was also plotted against the dimensionless speed of rotation, i.e. the product of the screw speed and the average residence time within the mixing section. This brings the abscissa ranges for mixers with different conveying capacity closer together, and differences in mixing efficiency between the tested configurations can be better interpreted. The energetic efficiency of the mixers investigated is compared by applying the concept of specific action. This helps to decide which mixer geometry and operating conditions produce a given homogeneity with the lowest amount of work done by viscous forces.  相似文献   

7.
This work was aimed at studying the overall, partial, and local residence time distributions (RTD); overall, partial and local residence revolution distributions (RRD) and overall, partial and local residence volume distributions (RVD) in a co‐rotating twin screw extruder, on the one hand; and establishing the relationships among them, on the other hand. Emphasis was placed on the effects of the type and geometry of mixing elements (a gear block and various types of kneading elements differing in staggering angle) and process parameters on the RTD, RRD and RVD. The overall and partial RTD were directly measured in‐line during the extrusion process and the local ones were calculated by deconvolution based on a statistical theory. The local RTD allowed comparing the mixing performance of mixing elements. Also it was confirmed both experimentally and theoretically that specific throughput, defined as a ratio of throughput (Q) over screw speed (N), controlled all the above three types of residence distributions, be they local, partial or overall. The RRD and RVD do not provide more information on an extrusion process than the corresponding RTD. Rather they are different ways of representing the same phenomena. POLYM. ENG. SCI., 48:19–28, 2008. © 2007 Society of Plastics Engineers  相似文献   

8.
This work aimed at developing a new instrument to measure in real time the residence time distribution (RTD) in screw extruders. The instrument followed the same principle as the one reported in the literature but possessed several important advantages. For example, the detection system had two probes that allowed to simultaneously measure RTDs at any two different locations of an extruder, thus providing the possibility of calculating the local RTD between them by a deconvolution method based on a statistical theory for the RTD. Its performance was evaluated on a corotating twin‐screw extruder using anthracene as tracer and polystyrene as flowing material. The effects of various process parameters such as feed rate and screw speed on the RTDs were investigated. The emphasis was placed, however, on the effect of the staggering angle of kneading discs on local RTDs both in the kneading zone itself and its neighboring upstream and downstream screw zones. This work is in support of an ongoing project on the simulation of flow in corotating twin‐screw extruders. POLYM. ENG. SCI., 46:510–519, 2006. © 2006 Society of Plastics Engineers.  相似文献   

9.
By means of new probe design and rapid data acquisition, we have succeeded in in‐line ultrasonic monitoring of residence time distribution (RTD) at the melting, mixing, and pumping zones as well as at the die exit of a Werner & Pfleiderer 30‐mm twin‐screw extruder by mounting the ultrasonic probes on the extruder barrel over the screw elements and at the die. The experimental systems were LDPE, CaCO3‐filled LDPE, and a Kraton/LDPE blend. The ultrasonic data at each of the extruder functional zones are presented. The ultrasonic results have been used to evaluate an opical RTD measurement method by using an optical sensor side by side with one ultrasonic probe at the mixing zone of the extruder. The comparison of the ultrasonic and optical results has shown that the presented ultrasonic technique could be a good complement to the optical technique in the monitoring and understanding of RTD during polymer extrusion processes.  相似文献   

10.
In the first part of this paper, a new approach to model the residence time distribution (RTD) in a co‐rotating twin‐screw extruder was proposed. It consists of coupling a continuum mechanics approach with a chemical engineering one, yielding an RTD curve without any fitting parameter. However, the choice of ideal reactors that depict the behavior of each particular profile is not evident. In this second part, we present an experimental study based on two types of extruder (Leistritz 30–34 and Clextral BC45), different screw profiles and two measurement techniques (off‐line and in‐line). Global, partial and local RTD curves were obtained, both experimentally and by means of a deconvolution technique. This series of experiments permitted the definition of the best association between ideal reactors and screw elements. Using this association, a comparison has been made between experimental results and theoretical calculations. A good agreement was generally obtained in terms of the RTD shape, delay time, mean residence time and variance.  相似文献   

11.
Composites of recycled poly(ethylene terephthalate) (PET) reinforced with short glass fiber (GF) (0, 20, 30, and 40 wt %) were compounded in a single‐screw extruder (SSE) and in a intermeshing corotating twin‐screw extruder (TSE). An SSE fitted with a barrier double‐flight screw melting section in between two single‐flight sections and a TSE with a typical screw configuration for this purpose were used. The composites were subsequently injection molded at two different mold temperatures (10 and 120°C), with all other operative molding parameters kept constant. The effects of processing conditions on composite microstructure, PET degree of crystallinity, and composite mechanical properties were evaluated. Appropriate dispersive and distributive mixing of the glass fiber throughout the PET matrix as well as fine composite mechanical and thermal‐mechanical properties were achieved regardless of whether the composites were prepared in the SSE or TSE. The performance of the SSE was attributed to the efficiency of the barrier screw melting section in composite mixing. The mold temperature influenced the mechanical properties of the composites, by controlling of the degree of crystallinity of the PET in the composites. For a good balance of mechanical and thermal‐mechanical properties, high mold temperatures are desirable, typically, 120°C for a mold cooling time of 45 s. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
基于有限差分数值模拟技术,提出了计算非牛顿流体在单螺杆挤出机内停留时间分布的半解析方法,得到了不同操作参数下的停留时间分布,该分布可用来表征聚合物熔体在加工过程中的混合情况.结果表明:半解析方法能够反映由流体的非牛顿性所导致的耦合流场及压力反流对混合的影响,能更真实地反映聚合物熔体在单螺杆挤出机内的混合程度.  相似文献   

13.
The effects of screw configurations, that is, the staggering angles and disc widths of the kneading blocks, on grafting reactive extrusion for maleic anhydride grafted low-density polyethylene were investigated in a corotating twin-screw extruder. Samples were collected from three positions along the screw and the die exit. The grafting degree (GD) of the specimens was evaluated by titration. It was found that the kneading block configurations had a significant influence on the grafting reactive extrusion. In addition, another three groups of extrusion experiments were performed to explore the intrinsic relationship between the GD, the degree of fill in the screw channel, the residence time distribution (RTD), and the mixing intensity in various screw configurations. The experimental results indicated that the location of the melting endpoint significantly affected the position at which the reaction began; the degree of fill, RTD, and mixing performance of the screw played important roles in the grafting reaction. The reverse kneading blocks with a narrow disc width, which had a high degree of fill and good mixing capacity, enhanced the increase in GD along the screw during the reactive extrusion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The purpose of this study is to gain better understanding of flow patterns and mixing conditions in a particular single‐screw extruder: the Buss Cokneader. To this end, the residence time distribution (RTD) of the polymer was investigated experimentally for different combinations of the operating variables (i.e. feed rate, screw rotation speed). The measurement of RTD used a standard stimulus‐response technique. Two kinds of tracer were used: free anthracene and anthracene grafted on the polymer. It was shown that only the second could characterize the actual flow of the polymer in the extruder. It does not perturb the flow and has the same rheological behavior as the studied fluid. Thanks to the RTD data, a model of the extruder based on the combination of ideal reactors, such as continuous stirred tank reactors or plug flow reactors, was finally set up. The establishment of relationships between model parameters and extrusion conditions allowed the prediction of RTD with good agreement.  相似文献   

15.
齿形盘元件的局部停留时间分布   总被引:2,自引:0,他引:2  
采用自制荧光检测装置在线测量含齿形盘元件(TME)的双螺杆挤出机的部分停留时间分布(PRTD),利用去卷积方法计算TME的局部停留时间分布(LRTD),并将PRTD转换成停留体积分布(RVD)和停留转数分布(RRD)。研究表明,直齿的LRTD曲线形状比斜齿更宽,其混合能力更强;喂料速率(Q)和螺杆转速(N)的提高均使LRTD曲线向短时间方向移动。等流量转速比(Q/N)的RRD和RVD曲线重合;提高Q/N,使RRD向低转数的方向移动,而RVD向高体积方向移动。对于特定螺杆构型,不同螺杆转速和喂料速率下的RVD曲线仅是体积坐标方向的平移,RVD曲线形状主要取决于螺杆构型。  相似文献   

16.
To characterize the actual flow behavior of polymer, polystyrene (PS) and polypropylene (PP) macromolecular tracers were synthesized by copolymerization and graft routes. The two tracers were then used to obtain the residence time distribution (RTD) functions of PS and PP in a twin‐screw extruder. The effect of temperature on RTD is discussed using different tracers. The mixing characteristics of different tracers in the extrusion of PS and PP were compared by measuring the overall and partial RTDs. The dependence of the overall and partial RTDs on the tracer types was investigated. The effects of mixing intensity, miscibility, and melting difference on the measured distribution were also discussed. POLYM. ENG. SCI., 54:310–316, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
The present investigation is an experimental study of the mixing of two phases of strongly different viscosity in a co‐rotating twin‐screw extruder (TSE). Two cases were considered: a miscible (copolymer of ethylene and vinyl acetate/bis(2‐ethylhexyl)phtalate [EVA/DOP]) and an immiscible (EVA/ethylene‐glycol [EVA/EG]) binary system. The residence time distribution (RTD) has been determined for each phase of both systems for different screw profiles and different operating conditions. The behavior of the first system is simple: the type of flow is basically the same. However, in the case of nonmiscibility, when the flow rate is high, the shape of the RTD of both phases may be different. We interpret this result with the appearance of a lubrication phenomenon. POLYM. ENG. SCI., 45:926–934, 2005. © 2005 Society of Plastics Engineers  相似文献   

18.
A melt pump was assembled into the compounding line to ensure both sufficient time for diffusion process of polymer chains into the silicate gallery and sufficient mechanical shear energy for exfoliation of clay layers. The melt pump in front of the open co‐rotating twin‐screw extruder controls the throughput rate and the residence time, whereas the screw speed and screw geometry in the extruder determine the mechanical shear energy applied on the compound. Due to melt pump employment, the melt in metering zone can be accumulated, which results in higher mixing efficiency. It was found that using the melt pump leads to up to two times higher residence time and, consequently, higher level of material reinforcement as investigated by extensional rheology. Different melt pump adjustments, screw geometries, and screw speeds were tested and their effect on processing characteristics and material reinforcement was investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
提出了采用副螺棱轴向往复运动提高单螺杆挤出机混合的结构并建立了相应的数学模型。对挤出机内牛顿流体三维周期性流动和混合过程进行了数值模拟。采用有限体积方法,变量分布采用交错网格,副螺棱的周期性运动边界通过叠加网格方式实现。采用4阶Runge-Kutta方法实现流体追踪计算,得到了示踪剂界面增长及累积停留时间分布。采用Poincaré 截面揭示混沌混合存在的区域,证实了副螺棱往复运动能够产生混沌混合效应提高螺槽内的混合效果,与其位置固定时相比,缩短了平均停留时间,停留时间分布变窄。作为对比,同时分析了常规的副螺棱位置固定的单螺杆挤出机内的相应混合行为。  相似文献   

20.
A theoretical model to determine the residence time distribution (RTD) in a co‐rotating twin‐screw extruder is proposed. The method consists of coupling a continuum mechanics approach with a chemical engineering one and allows us to obtain the RTD without any adjustable parameter. The process parameters are obtained using Ludovic® twin‐screw modeling software, and ideal reactors are chosen to depict the screw profile. The influence of screw speed, feed rate and viscosity on RTD are described on a fictive screw profile. The predictions of the model are in qualitative agreement with literature data. The key point of this procedure is obviously the correct association between an ideal reactor and a screw element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号