首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher soluble nanostructured polyaniline was prepared by vapor‐phase polymerization after passing aniline vapor through an aqueous acidic solution of ammonium persulfate (PANI‐V). Polyaniline was also synthesized by the conventional oxidative polymerization method (PANI‐C) in an aqueous medium for the comparison of its properties with PANI‐V. PANI‐V exhibited lower conductivity but higher hydrophilicity and higher solubility (2–3 times) in different solvents, such as tetrahydrofuran, N‐methyl‐2‐pyrrolidone, dimethylsulfoxide, N,N‐dimethyl formamide, and m‐cresol at room temperature compared with that of PANI‐C. The thermal stability of PANI‐V was higher than that of PANI‐C. In‐depth investigations of the crystal structures of PANI‐C and PANI‐V were performed through powder X‐ray diffraction analysis. The PANI‐V showed a less ordered structure with a lower crystallinity and crystallite size and with a higher d‐spacing and interchain separation compared with PANI‐C. The unit cell volume of PANI‐V was significantly higher with a greater number of atoms in the unit cell than that of PANI‐C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Electrochemical preparation of poly(2‐bromoaniline) (PBrANI) and poly(aniline‐co‐2‐bromoaniline) [P(An‐co‐2‐BrAn)] was carried out in an acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) and perchloric acid (HClO4). The cyclic voltammograms during the copolymerization had many features similar to those for the usual polymerization of aniline. The copolymer exhibits a higher dry electrical conductivity value than that of PBrANI and a lower one than that of PANI. The observed decrease in the conductivity of the copolymer relative to PANI is attributed to the incorporation of bromine moieties into the polyaniline chain. The structure and properties of the polymer and copolymer were elucidated using cyclic voltammetry (CV), FTIR, and UV‐vis spectroscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2460–2468, 2003  相似文献   

3.
In this research an attempt was made to prepare biocompatible electrically conductive composite polymer particles in view of their wide applications in biotechnology. Temperature‐sensitive polymer particles have applications as drug carriers, bioseparators, bioreactor cell activators and diagnostic reagents. So a combination of diverse properties in a single polymer composite is expected to increase its application potential. Here temperature‐responsive poly(N‐isopropyl acrylamide‐methyl methacrylate‐N,N′‐methylene‐bis‐acrylamide) (P(NIPAM‐MMA‐MBAAm)) core particles were prepared by emulsion copolymerization without using any stabilizer. In a second step seeded chemical oxidative polymerization of different amounts of aniline was carried out in the presence of submicron‐sized core particles to obtain P(NIPAM‐MMA‐MBAAm)/polyaniline composite particles. For a comparative study, reference polyaniline particles were prepared by chemical oxidative polymerization. Fourier transform IR spectroscopy, UV?visible spectroscopy, thermal and X‐ray diffraction analyses showed that composite particles prepared with higher aniline content (0.8 g) per unit mass (g) of core particles had high surface coverage compared with lower aniline content (0.1 g). © 2013 Society of Chemical Industry  相似文献   

4.
A novel method for preparing electrically conductive polypropylene‐graft‐polyacrylic acid/polyaniline (PP‐g‐PAA/PANI) composite films was developed. 1,4‐Phenylenediamine (PDA) was introduced on the surface of PP‐g‐PAA film, and then, chemical oxidative polymerization of aniline on PP‐g‐PAA/PDA film was carried out to prepare PP‐g‐PAA/PANI electrically conductive composite films. After each step of reaction, the PP film surface was characterized by attenuated total reflectance Fourier transform infrared spectroscopy. Static water contact angles of the PP, PP‐g‐PAA, and PP‐g‐PAA/PANI films were measured, and the results revealed that graft reactions took place as expected. The morphology of the PP‐g‐PAA film and the PP‐g‐PAA/PANI composite film were observed by atomic force microscopy. The conductivity and the thickness of the PP‐g‐PAA/PANI composite films with 1.5 wt % PANI were around 0.21 S/cm and 0.4 μm, respectively. The PANI on the PP‐g‐PAA/PANI film was reactivated and chain growing occurred to further improve the molecular weight of PANI. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2442–2450, 2007  相似文献   

5.
Thermal properties of melt processable polyaniline (PANI) synthesized by doping with functionalised novel sulfonic acid dopants have been investigated. Doping of PANI was carried out by using the dopants derived from an inexpensive naturally existing biomonomer, cardanol: sulfonic acid of 3‐pentadecylphenol, sulfonic acid of 3‐pentadecylanisole and sulfonic acid of 3‐pentadecylphenoxyacetic acid. These dopants act as very good plasticizing cum protonating agents for PANI. Doping was carried out either by mechanical mixing of emeraldine base and the dopant or by an in situ doping emulsion polymerization of aniline. Highly conducting free‐standing flexible films of protonated PANI could be prepared by a hot pressing method at different temperatures. The thermal stability and thermal reactions of these protonated PANI were followed by conductivity measurements at different temperatures, wide angle X‐ray diffraction measurements, thermogravimetric analysis and differential scanning colorimetry analysis. © 2001 Society of Chemical Industry  相似文献   

6.
The electrochemical polymerization of aqueous solution of aniline and HCl was carried out in a single compartment electrochemical cell. After 2 h of the polymerization reaction, polarity of the electrodes was reversed and kept for 1 h. By this process the conductivity of the polyaniline (PAni) formed was found to increase dramatically from 1.1 × 10?4 to 3.0 × 10?1 S/cm. The PAni samples obtained both by reversing the polarity (“PANI‐R”) and without reversing the polarity (“PANI”) were characterized by the infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), Hall effect experiment, X‐ray analysis (XRD) and scanning electron microscope (SEM). The results show that the increase in the conductivity of PAni through the reversion of polarity is due to the partial reduction of over oxidized sample giving more emeraldine base and hence more polaron formation with increased charge carrier density and its mobility. The degree of crystallinity and the crystallite size is decreased marginally and the d‐spacing is increased marginally due to this reduction. The PAni behaves like a p‐type semiconductor that means the majority current carriers are holes. A plausible reduction mechanism due to reversal of polarity during electrochemical polymerization is also proposed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Conducting polyaniline (PANI)/titanium dioxide (TiO2) composite nanofibres with an average diameter of 80–100 nm were prepared by one‐step in situ polymerization method in the presence of anatase nano‐TiO2 particles, and were characterized via Fourier‐transform infrared spectra, UV/vis spectra, wide‐angle X‐ray diffraction, thermogravimetric analysis, and transmission electron microscopy, as well as conductivity and cyclic voltammetry. The formation mechanism of PANI/TiO2 composite nanofibres was also discussed. This composite contained ~ 65% conducting PANI by mass, with a conductivity of 1.42 S cm?1 at 25°C, and the conductivity of control PANI was 2.4 S cm?1 at 25°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
A comparative study of chemical and enzymatic methods of aniline polymerization was carried out. Fungal laccase from Trametes hirsuta was used in the synthesis of polyaniline nanoparticles made with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS). Template polymerization of aniline was carried out in aqueous buffer. It was shown that the laccase had high long‐term and operating stabilities under acidic condition favorable for synthesis of conducting polyaniline. UV‐vis, FTIR spectroscopy, and cyclic voltammetry analysis are used for the characterization of the polyelectrolyte complexes of polyaniline and PAMPS. The incorporation of the polymeric acid in polyaniline has been demonstrated by atomic force microscopy. The size and morphology of the nanoparticles of the polyaniline–PAMPS complexes depended on the method of the synthesis. A comparison of some physical and chemical properties of water dispersible conducting polyaniline–PAMPS was performed under production by enzymatic and chemical methods. It was found a difference in structures and some physicochemical properties of polyaniline colloids prepared by chemical and laccase‐catalyzed methods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
A novel conductivity composite from polyaniline (PANI) and layered zirconium phenylphosphonate (ZrPP) was carried out through in situ chemical oxidation polymerization by the addition of an appropriate amount of ammonium peroxodisulfate solution, and the relevant structure and properties were investigated. The composites were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. The electrical conductivity was measured by the four‐probe technique. The electrical conductivity of the composites improved with increasing ZrPP loading, and the materials had reasonably good electrical properties, even with 40 wt % loadings of ZrPP in the polymer matrix. The results reveal that π–π interaction was formed in the composites, which enhanced the electrical conductivity of the composites compared to that in neat PANI. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A rapid polymerization technique was successfully employed to synthesize interconnected polyaniline (PANI) nanofibers using chemical oxidative polymerization inside a soft template. The thermoreversible hydrogels of Lutrol F 127 and gelatin were used as templates where the interstices present in the hydrogel were responsible for the formation of PANI nanofibers with a diameter in the range ca 70?75 nm and ca 50?55 nm respectively and several micrometers in length. The doped emeraldine salt of PANI was confirmed by Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy. The crystallinity of as‐synthesized PANI nanofibers for both cases was verified by an X‐ray diffraction study while thermogravimetric analysis was performed to compare the relative stability of the synthesized PANI nanofibers. The electrical conductivities of polymerized PANI are of the order of 10?3 S cm?1 and are compared with those of template fabricated PANI. The Lutrol F 127 gel guided PANI nanofibers showed a rectifying property while the gelatin gel guided PANI provided a simple ohmic nature. © 2013 Society of Chemical Industry  相似文献   

11.
A polyaniline (PANI) was synthesized by the oxidative polymerization using ammonium persulfate as an oxidizing agent. The PANI was then stirred with excess fuming sulfuric acid at room temperature for 6 h to obtain water soluble sulfonated polyaniline (SPANI). The degree of sulfonation was found to be 93–94% from the Fourier transform infrared (FTIR) and elemental analysis. The solubility of the SPANI in water was 1.25 g/L at room temperature and appeared as a green color solution. Conductivity of the PANI was decreased after sulfonation. A proliferation of hydrophilic nature of the PANI after sulfonation was observed from the water contact angle measurement. From the UV analysis, it was revealed that the energies required for the π–π* and bipolaron/polaron transitions are less and the intensity of these transitions are lower in SPANI compared to those of PANI. A detailed study on the crystal structures of PANI and SPANI were accomplished from the powder X‐ray diffraction analysis. The SPANI exhibited a more ordered structure having a higher degree of crystallinity and crystallite sizes with an increased unit cell volume compared to the PANI. After sulfonation the morphology of PANI was transformed from a rod‐like shape to a flat‐plate shape. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Enzymatic polymerization of aniline was first performed in lignosulfonate (LGS) template system. High‐redox‐potential catalyst laccase, isolated from Aspergillus, was used as a biocatalyst in the synthesis of conducting polyaniline/lignosulfonate (PANI‐ES‐LGS) complex using atmospheric oxygen as the oxidizing agent. The linear templates (LGS), also serving as the dopants, could facilitate the directional alignment of the monomer and improve the solubility of the conducting polymer. The process of the polymerization was monitored using UV‐Vis spectroscopy, by which the conditions for laccase‐catalyzed synthesis of PANI‐ES‐LGS complex were also optimized. The structure characterizations and solubility of the complex were carried out using corresponding characterization techniques respectively. The PANI‐ES‐LGS suspensions obtained was used as coating for cotton with a conventional padder to explore the applications of the complex. The variable optoelectronic properties of the coated cotton were confirmed by cyclic voltammetry and color strength test. The molecular weight changes of LGS treated by laccase were also studied to discuss the mechanism of laccase catalyzed aniline polymerization in LGS template system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42941.  相似文献   

13.
Waterborne polyurethane‐ureas (pristine WBPUs: WBPU‐19 and WBPU‐24, fixed soft segment content: 60 wt %) containing dimethylol propionic acid (DMPA)/ethylene diamine (EDA) contents (19/16.8 and 24/11.4 mol %) were prepared. The polyaniline (PANI)‐graft‐WBPU (PANI‐graft‐WBPU) films were prepared by oxidative graft polymerization of aniline on the surface layer of WBPU films. This study focused on the effects of reaction conditions (concentrations/treating times/temperatures of aniline and APS) and DMPA content on the %grafting, conductivity, and mechanical properties of PANI‐graft‐WBPU films. To obtain the maximum %grafting (PANI‐graft‐WBPU‐19: 6.2, and PANI‐graft‐WBPU‐24: 7.4) and conductivity (PANI‐graft‐WBPU‐19: 3.6 × 10?2S/cm, and PANI‐graft‐WBPU‐24: 4.7 × 10?2S/cm), the optimum concentrations/treating times/temperatures of aniline and APS, were found to be 0.35M/10 min/25°C and 0.2M/10 min/0°C, respectively. The tensile strength of film samples was found to be increased in the order of PANI‐graft‐WBPU‐19>pristine WBPU‐19>PANI‐graft‐WBPU‐24>pristine WBPU‐24. The PANI‐graft‐WBPU‐19 (%grafting: 6.2) films on exposure to 0–10,000 ppm phenol solutions showed a well‐defined response behavior, demonstrating high promise for application in aqueous phenol sensors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
In this study, emeraldine base (EB)‐form polyaniline (PANI) powder was chemically prepared in 1M HNO3 aqueous solution. The thermal characteristics and chemical structures of this powder were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X‐ray diffraction (XRD). A polarizing optical microscope was also used to examine the crystalline morphology of this sample. The results indicated that the EB‐form PANI powder had a discernible moisture content. Moreover, in the first run of DSC thermal analysis, the exothermic peak at 170–340°C was due to the crosslinking reaction occurring among the EB‐form PANI molecular chains. FTIR and XRD examinations further confirmed the chemical crosslinking reaction during thermal treatment. TGA results illustrated that there were two major stages for weight loss of the EB‐form PANI powder sample. The first weight loss, at the lower temperature, resulted from the evaporation of moisture. The second weight loss, at the higher temperature, was due to the chemical structure degradation of the sample. The degradation temperature of the EB‐form PANI powder was around 420–450°C. The degradation temperature of emeraldine salt (ES)‐form PANI powder was lower (around 360–410°C) than that of the EB form (around 420–450°C). From the TGA results, I roughly estimated that 2.74 aniline repeat units, on average, were doped with 1 HNO3 molecule in the ES‐form PANI. I found a single crystalline morphology of EB‐form PANI, mostly like a conifer leaf. More complex, multilayered dendritic structures were also found. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2142–2148, 2003  相似文献   

15.
An advanced nanocomposite, polyaniline tungstophosphate (PANI‐WP) cation exchanger, was synthesized by simple solution method and treated with silver nitrate resulting silver embedded PANI‐WP (PANI‐WP/Ag). Spectroscopic characterization of PANI‐WP/Ag was carried out by scanning electron microscopy, fourier transform infrared spectroscopy, UV‐Visible spectroscopy, and X‐ray diffraction. Electrical conductivity measurements and thermal effect on conductivity of PANI‐WP/Ag was studied after acid treatment. The dc electrical conductivity was found 3.06 × 10−3 S cm−1 for HCl doped, measured by 4‐in line‐probe dc electrical conductivity measuring technique. Thermal conductivity is stable with all temperatures in isothermal studies showing excellent stability of PANI‐WP/Ag material. Hybrid showed better linear Arrhenius electric conducting response for semiconductors, stable upto 120°C. It was observed that conductivity is at the border of metallic and semiconductor region. POLYM. COMPOS., 37:2460–2466, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
In this study, a method is developed to fabricate sulfonated poly (ether ether ketone)/phosphotungstic acid‐polyaniline (SPEEK/HPW‐PANI) membranes by in situ polymerization of aniline for the purpose of decreasing the weight loss of HPW in the membranes. The synthesis involves the production of a SPEEK/HPW hybrid membrane followed by different layer of PANI coatings on the membrane surface, and subsequent treatment using drying in vacuum procedures. The scanning electronic microscopy images showed that HPW had good compatibility with SPEEK polymers and energy dispersive X‐ray spectroscopy revealed the successfully doping with HPW and polymerization of PANI. The surface of SPEEK/HPW‐PANI becomes more compact than that of SPEEK/HPW and pure SPEEK, which may lead to reduce the water uptake and swelling property. The proton conductivity was found for the SPEEK/HPW‐PANI‐5 composite membrane (91.53 mS/cm at 80°C) higher than that of pure SPEEK membrane (68.72 mS/cm at 80°C). Better thermal stability was determined in both SPEEK/HPW and SPEEK/HPW‐PANI membranes than pristine SPEEK membrane. Therefore, PANI is a good potential coating for organic–inorganic hybrid e.g. SPEEK/HPW membrane materials to improve their hydrothermal stable properties and SPEEK/HPW PANI is a material that shows promise as a proton exchange membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41033.  相似文献   

17.
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10?2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ~3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006  相似文献   

18.
Potassium iodate–initiated polymerization of aniline was carried out in an acidified aqueous medium in the presence and in the absence of sodium thiosulfate salt. The nature of the polyaniline (PANI) produced depended on the aniline/potassium iodate (A/PI) mole ratio. Green emeraldine salt (ES) and blue pernigraniline salt (PS) were produced at A/PI mole ratios greater than 2 and less than 2, respectively. The sodium thiosulfate salt played a significant role in the purification and properties of PANI. The optimum aniline‐to‐oxidant mole ratio was found to be 2 : 1. Spectral, thermal, and electrical characteristics and viscosity of the materials were studied and compared with the results. A reaction scheme has been proposed to elucidate the role of iodine(V). Sodium thiosulfate makes it easier for iodine to be separated from a system and increases the conductivity of the products. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1626–1631, 2007  相似文献   

19.
Blend films (free‐standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI‐EB (emeraldine base) dissolved in N‐methyl‐2‐pyrrolidone (NMP) to the latex (NRL), (2) adding PANI‐EB dissolved in m‐cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress–strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1498–1503, 2005  相似文献   

20.
Novel polyaniline (PANI)/flowerlike CuS composites with improved electromagnetic interference (EMI) shielding effectiveness (SE) were prepared through the in situ polymerization of PANI into the flowerlike CuS microspheres. X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible optical absorption spectroscopy, thermogravimetric analysis, electrical conductivity testing, and EMI SE testing were used to characterize the as‐obtained products. The results reveal that the flowerlike CuS was uniformly coated by a PANI shell. Most importantly, compared with the original CuS and pure PANI, the novel PANI/flowerlike CuS composites exhibited a remarkably enhanced SE. With a thickness of 3 mm, the optimal EMI SE of the PANI–CuS composites reached ?45.2 dB at 2.78 GHz, and an improved shielding efficiency below ?18 dB was also obtained over the frequency range from 300 kHz to 3 GHz. This suggested that these novel PANI/flowerlike CuS composites have promising applications in the field of shielding materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45232.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号