首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topology control is an efficient strategy for improving the performance of wireless ad hoc and sensor networks by building network topologies with desirable features. In this process, location information of nodes can be used to improve the performance of a topology control algorithm and also ease its operations. Many location‐based topology control algorithms have been proposed. In this paper, we propose two location‐assisted grid‐based topology control (GBP) algorithms. The design objective of our algorithm is to effectively reduce the number of active nodes required to keep global network connectivity. In grid‐based topology control, a network is divided into equally spaced squares (called grids). We accordingly design cross‐sectional topology control algorithm and diagonal topology control algorithm based on different network parameter settings. The key idea is to build near‐minimal connected dominating set for the network at the grid level. Analytical and simulation results demonstrate that our designed algorithms outperform existing work. Furthermore, the diagonal algorithm outperforms the cross‐sectional algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we address the energy‐efficient connectivity problem of a wireless sensor network (WSN) that consists of (1) static sensor nodes that have a short communication range and limited energy level, and (2) relay nodes that have a long communication range and unlimited power supply, and that can be added or relocated arbitrarily. For such a WSN, existing studies have been focused on the design of efficient approximation algorithms to minimize the number of relay nodes. By contrast, we propose a unified backbone construction framework that can be performed in a centralized manner with two objectives: (1) to minimize the number of nodes in the backbone and (2) to maximize the lifetime of the network. To solve such a challenging problem, we formulate three subproblems: (1) partial dominating set with energy threshold (PDSET); (2) partial dominating set with largest residual energy (PDSLE); and (3) minimum relay node placement (MRNP). For these three subproblems, we develop polynomial‐time algorithms. We also prove that our algorithm for PDSLE is optimal, and our algorithm for the PDSET and MRNP problems have small approximation ratios. Numerical results show that the proposed framework can significantly improve energy efficiency and reduce backbone size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Time synchronization is essential for several ad‐hoc network protocols and applications, such as TDMA scheduling and data aggregation. In this paper, we propose a time synchronization framework for clustered, multi‐hop sensor networks. We assume that relative node synchronization is sufficient, that is, consensus on one time value is not required. Our goal is to divide the network into connected synchronization regions (nodes within two‐hops) and perform inter‐regional synchronization in O(LLSync) × Niter time, where O(LLSync) denotes the complexity of the underlying low‐level synchronization technique (used for single‐hop synchronization), and Niter denotes the number of iterations where the low‐level synchronization protocol is invoked. Thus, our main objective is rapid convergence. We propose novel fully distributed protocols, SYNC‐IN and SYNC‐NET, for regional and network synchronization, respectively, and prove that Niter is O(1) for all protocols. Our framework does not require any special node capabilities (e.g., being global positioning systems (GPS)‐enabled), or the presence of reference nodes in the network. Our framework is also independent of the particular clustering, inter‐cluster routing, and low‐level synchronization protocols. We formulate a density model for analyzing inter‐regional synchronization, and evaluate our protocols via extensive simulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Energy‐efficient routing becomes one of the most critical technologies for sustaining the overall network lifetime of wireless sensor networks. In this paper, we propose a novel data transmission scheme between a number of specified source nodes and the single sink, which can efficiently restrict the usage frequency of each relay node, measured by the number of source nodes using it for data transmission. On the basis of the importance of source nodes that is closely related to deployed location, they form a descending sequence such that each node finds the minimum energy path earlier than the succeeding one. Then, the energy‐efficient multiple path algorithm with the computational complexity of O(n3) is developed for deriving the minimum energy paths, where n is the number of nodes in the network. Also, a polynomial algorithm is presented for deriving the range of the feasible values of N0 serving as the threshold of the usage frequency of relay nodes, in which each can guarantee the existence of the solution. Further, we theoretically investigate the existence of the solution and the tree‐structured solution using m‐ary tree. Extensive simulation results show that our proposed scheme can achieve significant performance enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The channel scheduling problem is to decide how to commit channels for transmitting data between nodes in wireless networks. This problem is one of the most important problems in wireless sensor networks. In this problem, we aim to obtain a near‐optimal solution with the minimal energy consumption within a reasonable time. As the number of nodes increases in the network, however, the amount of calculation for finding the solution would be too high. It can be difficult to obtain an optimal solution in a reasonable execution time because this problem is NP‐hard. Therefore, most of the recent studies for such problems seem to focus on heuristic algorithms. In this paper, we propose efficient channel scheduling algorithms to obtain a near‐optimal solution on the basis of three meta‐heuristic algorithms; the genetic algorithm, the Tabu search, and the simulated annealing. In order to make a search more efficient, we propose some neighborhood generating methods for the proposed algorithms. We evaluate the performance of the proposed algorithms through some experiments in terms of energy consumption and algorithm execution time. The experimental results show that the proposed algorithms are efficient for solving the channel scheduling problem in wireless sensor networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider the applications of delay‐tolerant networks (DTNs), where the nodes in a network are located in separated areas, and in each separated area, there exists (at least) an anchor node that provides regional network coverage for the nearby nodes. The anchor nodes are responsible for collecting and distributing messages for the nodes in the vicinity. This work proposes to use a set of messengers (named pigeons) that move around the network to deliver messages among multiple anchor nodes. Each source node (anchor node or Internet access point) owns multiple dedicated pigeons, and each pigeon takes a round trip starting from its home (i.e., the source) through the destination anchor nodes and then returns home, disseminating the messages on its way. We named this as a homing‐pigeon‐based messaging (HoPM) scheme. The HoPM scheme is different from the prior schemes in that each messenger is completely dedicated to its home node for providing messaging service. We obtained the average message delay of HoPM scheme in DTN through theoretical analysis with three different pigeon scheduling schemes. The analytical model was validated by simulations. We also studied the effects of several key parameters on the system performance and compared the results with previous solutions. The results allowed us to better understand the impacts of different scheduling schemes on the system performance of HoPM and demonstrated that our proposed scheme outperforms the previous ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In many applications of wireless sensor networks, sensor nodes are manually deployed in hostile environments where an attacker can disrupt the localization service and tamper with legitimate in-network communication. In this article, we introduce Secure Walking GPS, a practical and cost effective secure localization and key distribution solution for real, manual deployments of WSNs. Using the location information provided by the GPS and inertial guidance modules on a special master node, Secure Walking GPS achieves accurate node localization and location-based key distribution at the same time. We evaluate our localization solution in real deployments of MicaZ. Our experiments show that 100% of the deployed nodes localize (i.e., have a location position) and that the average localization errors are within 1–2 m, due mainly to the limitations of the existing commercial GPS devices. Our further analysis and simulation results indicate that the Secure Walking GPS scheme makes a deployed WSN resistant to the Dolev-Yao, the wormhole, and the GPS-denial attacks, the scheme is practical for large-scale deployments with resource-constrained sensor nodes and has good localization and key distribution performance.  相似文献   

8.
Recent advancement in wireless sensor network has contributed greatly to the emerging of low‐cost, low‐powered sensor nodes. Even though deployment of large‐scale wireless sensor network became easier, as the power consumption rate of individual sensor nodes is restricted to prolong the battery lifetime of sensor nodes, hence the heavy computation capability is also restricted. Localization of an individual sensor node in a large‐scale geographic area is an integral part of collecting information captured by the sensor network. The Global Positioning System (GPS) is one of the most popular methods of localization of mobile terminals; however, the use of this technology in wireless sensor node greatly depletes battery life. Therefore, a novel idea is coined to use few GPS‐enabled sensor nodes, also known as anchor nodes, in the wireless sensor network in a well‐distributed manner. Distances between anchor nodes are measured, and various localization techniques utilize this information. A novel localization scheme Intersecting Chord‐Based Geometric Localization Scheme (ICBGLS) is proposed here, which loosely follows geometric constraint‐based algorithm. Simulation of the proposed scheme is carried out for various communication ranges, beacon broadcasting interval, and anchor node traversal techniques using Omnet++ framework along with INET framework. The performance of the proposed algorithm (ICBGLS), Ssu scheme, Xiao scheme, and Geometric Constraint‐Based (GCB) scheme is evaluated, and the result shows the fact that the proposed algorithm outperforms the existing localization algorithms in terms of average localization error. The proposed algorithm is executed in a real‐time indoor environment using Arduino Uno R3 and shows a significant reduction in average localization time than GCB scheme and similar to that of the SSU scheme and Xiao scheme.  相似文献   

9.
In large‐scale wireless sensor networks, cost‐effective and energy‐efficient localization of sensor nodes is an important research topic. In spite of their coarse accuracy, range‐free (connectivity‐based) localization methods are considered as cost‐effective alternatives to the range‐based localization schemes with specialized hardware requirements.In this paper, we derive closed‐form expressions for the average minimum transmit powers required for the localization of sensor nodes, under deterministic path loss, log‐normal shadowing, and Rayleigh fading channel models. The impacts of propagation environment and spatial density of anchor nodes on the minimum transmit power for node localization are evaluated analytically as well as through simulations. Knowledge of the minimum transmit power requirements for localizability of a sensor node enables improving energy efficiency and prolonging lifetime of the network. We also propose a novel distance metric for range‐free localization in large‐scale sensor networks. The target and anchor nodes are assumed to be positioned according to two statistically independent two‐dimensional homogeneous Poisson point processes. Analytical expression for the average distance from a target node to its kth nearest neighbor anchor node is derived and is used for estimating the target‐to‐anchor node distances for localization. The Cramér–Rao lower bound on the localization accuracy for the new distance estimator is derived. Simulation results show the accuracy of the proposed distance estimate compared with some existing ones for range‐free localization. The results of our investigation are significant for low‐cost, energy‐efficient localization of wireless sensor nodes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A wireless mesh network has been popularly researched as a wireless backbone for Internet access. However, the deployment of wireless mesh networks in unlicensed bands of urban areas is challenging because of interference from external users such as residential access points. We have proposed Urban‐X, which is a first attempt towards multi‐radio cognitive mesh networks in industrial, scientific, and medical bands. Urban‐X first controls network topology with a distributed channel assignment to avoid interference in large timescale. In such a topology, we develop a new link‐layer transmission‐scheduling algorithm together with source rate control as a small‐timescale approach, which exploits receiver diversity when receivers of multi‐flows can have different channel conditions because of varying interference. For this purpose, mesh nodes probe the channel condition of received mesh nodes using group Request to Send and group Clear to Send. In this study, we establish a mathematical Urban‐X model in a cross‐layer architecture, adopting a well‐known network utility maximization framework. We demonstrate the feasibility of our idea using a simulation on the model. Simulation results show improved network throughput from exploiting receiver diversity and distributed channel assignment under varying external user interference. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We present an integrated approach to pricing and scheduling for services that are differentiated in terms of throughput, delay and loss specifications. The key building block to the model are quality value curves that specify a user's value of higher quality levels. From the analysis emerges a pricing rule that charges based on rate and quality grade, and a dynamic scheduling rule, called the Gcµ rule. The analysis also derives the economically optimal probabilistic quality of service (QoS) guarantee parameters. We compare our model to the deterministic approach of QoS guarantees using burstiness constraints and fair scheduling rules. The scheduling that arises from such a deterministic approach is the well‐known Generalized Processor Sharing (GPS). A comparative analysis inspires the fair Gcµ‐PS rule as the scheduling rule that combines the unique strengths of GPS and Gcµ. This Gcµ‐PS rule is proposed as a tailored scheduling solution for both the expedited forwarding class and the four assured forwarding classes in the IETF's differentiated services. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The use of directional antennas in mobile ad hoc networks (MANETs) has shown to offer large throughput gains relative to omnidirectional antennas. When used in ad hoc networks, directional medium‐access‐control (DMAC) protocols usually require all nodes, or part of nodes, to be aware of their exact locations. This location information is typically provided using a global positioning system (GPS). Although GPS systems are designed to be as nearly accurate as possible, there are still estimation errors that can cause a relatively large deviation from the actual GPS receiver position. In this paper, we investigate the effect of inaccurate node position estimation on the throughput of these protocols. Our results clearly indicate that the advantages of DMAC protocols diminish if the available position information is not accurate enough. As an alternative, we propose an efficient DMAC protocol that utilizes signal parameter estimation via the rotational invariance technique (ESPRIT) for direction‐of‐arrival (DOA) estimation; alleviating the need for GPS and, hence, avoiding the degrading associated with typical GPS position estimation errors. Moreover, unlike GPS‐based protocols, our protocol is suitable for both outdoor and indoor applications. Under different operating conditions and channel models, our simulation results show the throughput improvement achieved using the proposed protocol relative to the IEEE 802.11. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum‐Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum‐based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake‐up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.  相似文献   

14.
Wireless sensor networks have emerged recently as an effective way of monitoring remote or inhospitable physical targets, which usually have different quality of service (QoS) constraints, i.e., different targets may need different sensing quality in terms of the number of transducers, sampling rate, etc. In this paper, we address the problem of optimizing network lifetime while capturing those diversified QoS coverage constraints in such surveillance sensor networks. We show that this problem belongs to NP‐complete class. We define a subset of sensors meeting QoS requirements as a coverage pattern, and if the full set of coverage patterns is given, we can mathematically formulate the problem. Directly solving this formulation however is difficult since number of coverage patterns may be exponential to number of sensors and targets. Hence, a column generation (CG)‐based approach is proposed to decompose the original formulation into two subproblems and solve them iteratively. Here a column corresponds to a feasible coverage pattern, and the idea is to find a column with steepest ascent in lifetime, based on which we iteratively search for the maximum lifetime solution. An initial feasible set of patterns is generated through a novel random selection algorithm (RSA), in order to launch our approach. Experimental data demonstrate that the proposed CG‐based approach is an efficient solution, even in a harsh environment. Simulation results also reveal the impact of different network parameters on network lifetime, giving certain guidance on designing and maintaining such surveillance sensor networks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Routing in a low duty‐cycled wireless sensor network (WSN) has attracted much attention recently because of the challenge that low duty‐cycled sleep scheduling brings to the design of efficient distributed routing protocols for such networks. In a low duty‐cycled WSN, a big problem is how to design an efficient distributed routing protocol, which uses only local network state information while achieving low end‐to‐end (E2E) packet delivery delay and also high packet delivery efficiency. In this paper, we study low duty‐cycled WSNs wherein sensor nodes adopt pseudorandom sleep scheduling for energy saving. The objective of this paper is to design an efficient distributed routing protocol with low overhead. For this purpose, we design a simple but efficient hop‐by‐hop routing protocol, which integrates the ideas of multipath routing and gradient‐based routing for improved routing performance. We conduct extensive simulations, and the results demonstrate the high performance of the proposed protocol in terms of E2E packet delivery latency and packet delivery efficiency as compared with existing protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In addition to the requirements of the terrestrial sensor network where performance metrics such as throughput and packet delivery delay are often emphasized, energy efficiency becomes an even more significant and challenging issue in underwater acoustic sensor networks, especially when long‐term deployment is required. In this paper, we tackle the problem of energy conservation in underwater acoustic sensor networks for long‐term marine monitoring applications. We propose an asynchronous wake‐up scheme based on combinatorial designs to minimize the working duty cycle of sensor nodes. We prove that network connectivity can be properly maintained using such a design even with a reduced duty cycle. We study the utilization ratio of the sink node and the scalability of the network using multiple sink nodes. Simulation results show that the proposed asynchronous wake‐up scheme can effectively reduce the energy consumption for idle listening and can outperform other cyclic difference set‐based wake‐up schemes. More significantly, high performance is achieved without sacrificing network connectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In hierarchical sensor networks using relay nodes, sensor nodes are arranged in clusters and higher powered relay nodes can be used as cluster heads. The lifetime of such a network is determined primarily by the lifetime of the relay nodes. In this paper, we propose two new integer linear programs (ILPs) formulations for optimal data gathering, which maximize the lifetime of the upper tier relay node network. Unlike most previous approaches considered in the literature, our formulations can generate optimal solutions under the non‐flow‐splitting model. Experimental results demonstrate that our approach can significantly extend network lifetime, compared to traditional routing schemes, for the non‐flow‐splitting model. The lifetime can be further enhanced by periodic updates of the routing strategy based on the residual energy at each relay node. The proposed rescheduling scheme can be used to handle single or multiple relay node failures. We have also presented a very simple and straightforward algorithm for the placement of relay nodes. The placement algorithm guarantees that all the sensor nodes can communicate with at least one relay node and that the relay node network is at least 2‐connected. This means that failure of a single relay node will not disconnect the network, and data may be routed around the failed node. The worst case performance of the placement algorithm is bounded by a constant with respect to any optimum placement algorithm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Device‐to‐device (D2D) communications have been viewed as a promising data offloading solution in cellular networks because of the explosive growth of multimedia applications. Because of the nature of distributed device location, distributed caching becomes an important function of D2D communications. By taking advantage of the caching capacity of the device, in this work, we explore the device storage and file frequent reuse to realize distributed content dissemination, that is, storing contents in mobile devices (named helpers). Specifically, we first investigate the average and lower bound of helper amount by dividing the network into small areas where the nodes are within each other's communication radius. Then, optimal helper amount is derived based on average helper amount and network topology. Subsequently, a location‐based distributed helper selection scheme for distributed caching is proposed based on the given optimal helper amount. In particular, nodes are selected as helpers according to their locations and degrees, and contents are placed in the manner for maximizing total user utility. Extensive simulation results demonstrate the factors that affect the optimal helper amount and the total user utility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Connected dominating sets (CDS) can be used to form virtual backbones for the hierarchical routing to save energy in the wireless sensor networks. The existing algorithms for CDS can only be used to the topologies that have larger vertex connective degrees. Besides, most of them do not consider the energy characteristics of the virtual backbones constructed by the dominating sets. In this paper, a referenced energy‐based CDS algorithm (RECA) is proposed, which can generate smaller CDS in random topologies without the limitation of vertex connective degrees. At the same time, the algorithm introduces Referenced Energy as a parameter for nodes when making the decision whether they are chosen to be the dominators or not. Therefore, as the experimental results show, the energy characteristic of the dominating set is improved and routing in the virtual backbones constructed by such CDSs will have a better performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号