首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The poly(lactic acid)/clay nanocomposites (PLACNs) were prepared by melt mixing method, then multiepoxide chain extender (CE) was added into PLACNs to induce the branched structure of poly(lactic acid) (PLA) chains. The nonisothermal cold crystallization and isothermal melting crystallization of PLA, PLACNs, and chain extended PLACNs (CEPLACNs) were characterized by DSC and studied by Avrami analysis. The results showed that the inducing of clay and CE affected the crystallization behavior of PLA in different way. Adding CE increased the overall crystallinity of PLA at cooling process, but clay had an opposite effect. Besides that, the addition of CE and clay increased the crystal nuclei number due to the heterogeneous nucleation mechanism. According to the crystallization kinetics study, the inducing of clay almost no effect on the crystal growth rate of PLA, but the branched structure had a pronounced effect for improving crystal growth rate of PLA. POLYM. COMPOS., 36:2123–2134, 2015. © 2014 Society of Plastics Engineer  相似文献   

2.
Polylactide/polyethylene blends (PLA/PE) and their nanocomposites were prepared via the melt blending process. The effects of organoclay, compatibilizer (PE‐g‐MA), and PE content on morphology, linear viscoelastic properties of the melt and cold crystallization of the samples have been studied. The Palierne model is applied to predict the rheological behavior of unfilled blends. It implies that there is a quantitative agreement between model and experimental data for low PE content blend. From WAXD and the rheological behavior, it is shown that organoclay exhibits a higher extent of intercalation and dispersion in PLA/PE/organoclay nanocomposite than in PLA/organoclay nanocomposite. The DSC results present that the addition of compatibilizer into blend nanocomposite increases cold crystallization temperature of PLA by about 3°C. This can be explained by the role of compatibilizer in transfer of a part of organoclay from PLA matrix to droplets resulting in increase of PLA chain mobility and, therefore, slightly greater cold crystallization temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41300.  相似文献   

3.
Melt and cold isothermal crystallization studies were carried out on polylactide (PLA)/poly[butylene succinate)-co-adipate] (PBSA) neat blend and blend-clay composites. The neat blend and blend-clay composites were prepared by melt-blending in a batch mixer. The weight ratio of PLA to PBSA was fixed at 70:30, while the content of the organoclay was varied from 0 to 9 wt%. The spherulitic growth rates and morphologies of PLA and PBSA in the samples were examined through polarized optical microscopy, while the rate of crystallization and the extent of crystallinity were studied through differential scanning calorimetry. The kinetics of melt and cold crystallization of PLA were adequately described by the Avrami model. There was a strong dependence of the rate of crystallization and extent of crystallinity of PLA on the extent of clay loading and flow induced morphology. For composites with 2 and 6 wt% clay loading, uniquely slower crystallization occurred. A qualitative relationship between phase morphology and crystallization, as affected by clay loading, is therefore described.  相似文献   

4.
This study investigated the influence of montmorillonite (MMT) content on the mechanical/thermal properties of microcellular injection‐molded polylactide (PLA)/clay nanocomposites. Carbon dioxide was the blowing agent. The PLA/MMT nanocomposites were prepared by twin screw extrusion. The results showed that as MMT content is increased, tensile strength, impact strength, and cell density decrease. This is caused by the speed degradation of PLA due to the addition of MMT. MMT decreases the crystallization temperature but increases the decomposition temperature of the nanocomposites. The XRD results showed that the layer spacing of the clay increases as MMT content increases. TEM pictures showed that the MMT is well dispersed within the PLA matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

5.
This study is an analytical investigation of processability of biopolymer‐carbon based nanofiller composites primarily through rheological investigation of samples. The composites were fabricated via dry mixing and melt‐blending of biodegradable polylactide (PLA) and nanographite platelets (NGP) in a Brabender twin screw extruder. A range of different nanofiller contents (1, 3, 5, 7, and 10 wt %) were studied for NGP containing composites. The morphology was studied with X‐ray diffraction and transmission electron microscopy techniques and showed poor dispersion, with agglomerates, tactoids, and exfoliated layers present. Mechanical properties showed an optimum at 3 wt % filler. Results showed that the composites exhibited higher elastic and viscous moduli than neat PLA. The rheological percolation threshold predicted by changes in slope (α) as well as liquid–solid transition theory of samples was found around 3 wt % through the change from liquid‐like behavior to pseudo‐solid‐like behavior at terminal region during dynamic oscillatory measurements. NGP nanofillers were found to enhance the viscoelastic and mechanical properties of PLA at low concentrations; however, an efficient dispersion of nanofillers within polymer by melt intercalation method of mixing was not achieved. POLYM. ENG. SCI., 54:175–188, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
The effect of clay and chain extender on the nonisothermal, isothermal crystallization kinetics, and morphology of polylactide (PLA) was investigated in this study. PLA and PLA‐based nanocomposites containing 2 wt% organoclay were prepared via melt compounding. Three commercially available chain extenders were used: polycarbodiimide (PCDI), tris(nonylphenyl) phosphite (TNPP), and Joncryl ADR4368F. The nanoclay particles were found to act as nucleating agents. Chain extender incorporation, however, had diverse effects on both crystallization rate and degree of crystallinity. Nonisothermal DSC results revealed that the addition of PCDI increased the cold‐crystallization temperature (Tc) from 106 to 114°C, reduced the degree of crystallinity from 6.3 to 5.3%, and resulted in the formation of bimodal melting peaks in PLA. On the other hand, the reduction of chain ends in the presence of TNPP resulted in a significant increase of the crystallization rate and degree of crystallinity from 6.3 to 15.2%. In the case of Joncryl, its incorporation led to the formation of a long‐chain branching structure, which disrupted the chain packing. Therefore, the degree of crystallinity (from 6.3 to 1.6%) and the rate of crystallization decreased, while Tc was increased from 106 to 122°C in the presence of Joncryl. POLYM. ENG. SCI., 2013. © Society of Plastics Engineers  相似文献   

7.
Composites of poly(lactic acid) (PLA) and organoclays with clay loadings of up to 80% were prepared as self‐supporting films using a doctor‐blading approach. Depending on the properties of the used organoclay, either intercalated nanocomposites or conventional composites were obtained. The incorporation of such high amounts of clay resulted in up to 10‐fold decrease in the water vapor transmission rate when compared to the pristine polymer. The effect of clay platelets on the crystallization of PLA chains was also studied; it was found that high amounts of clay hinder only the melt crystallization of the polymer, whereas cold crystallization proceeds as usual. On the other hand, the crystallization of PLA also influenced the composite structure by increasing the extent of intercalation of polymer between clay layers. This study thus shows that the change in the extent of clay‐polymer interactions is also an important factor in controlling nanocomposite structure, especially for high loading. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The crystallization behavior of polylactide/carbon nanotube composites was studied using differential scanning calorimeter and polarized optical microscope. The nucleation mechanisms and the crystallization kinetics were explored. The results show that the presence of nanotubes has nucleating effect on both the melt crystallization and the cold crystallization of PLA. However, the nanotubes also play the role of physical barrier, impeding the crystal growth dynamically. In the experimental range of temperatures, the presence of nanotubes accelerates the melt crystallization, while retards the overall kinetics of the cold crystallization. The biodegradability of the samples with various crystallization histories was then further examined. The results show that the presence of nanotubes reduces the biodegradation rate of PLA, and the amorphous sample shows the highest degradation levels. Moreover, a lower degradation level is observed both on the surface and inside the sample with melt crystallization history in contrast to the one with cold crystallization history. POLYM. ENG. SCI., 50:1721–1733, 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
Understanding the crystallization process of polymer blends is of great importance for designing their process conditions, especially when the crystallization occurs during heating, so‐called cold crystallization. In this paper, the cold crystallization behavior of poly(lactic acid) (PLA) in its blends with acrylic rubber (ACM) was studied as a function of ACM content, using various techniques including differential scanning calorimetry, polarized optical microscopy and rheological methods. It was found that the addition of 10 wt% ? 20 wt% ACM to the PLA accelerated its cold crystallization. However, on using a greater amount of ACM up to 30%, the rate of crystallization was not further increased. In the ACM‐rich blends, the crystallizable PLA domains were distributed inside the amorphous ACM matrix and consequently confined crystallization occurred. The observed effects are discussed in terms of the interplay between chain mobility enhancement and the influence of phase boundaries. © 2017 Society of Chemical Industry  相似文献   

10.
In this article, we report the effects of the molecular weight on the electrospinnability of polylactide (PLA) solutions under identical conditions. Only above the entanglement concentration could uniform fibers be generated for PLA with a low molecular weight. However, electrospinning from a solution below its entanglement concentration produced uniform nanofibers when a high‐molecular‐weight PLA was adopted. The slow relaxation of high‐molecular‐weight PLA was expected to preserve chain interconnectivity in the highly stretched liquid jets during electrospinning. Correspondingly, rapid cold crystallization and a high modulus were exhibited by the resulting PLA nanofibers because of their remarkable molecular alignment.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44853.  相似文献   

11.
Cast films of poly(lactic acid) (PLA) and polypropylene (PP) with 2.5 and 5 wt % organo modified nanoclay were prepared and then uniaxially and biaxially hot drawn at T = 90 and 155°C, respectively, using a biaxial stretcher. The orientation of PLA and PP crystal unit cells, alignment of clay platelets, as well as the extent of intercalation and exfoliation were studied using wide angle X‐ray diffraction (WAXD). The measurement of d‐spacing of the 001 plane (normal to platelets plane) of the clay tactoids indicated the intercalation of the silicate layers for the PLA nanocomposite films, whereas the PP nanofilled films showed only dispersion of the nanoparticles (i.e., neither intercalation nor exfoliation were observed). The intercalation level of the clay platelets in PLA was almost identical for the uniaxially and biaxially drawn films. Our finding showed that the crystallite unit cell alignments are appreciably dependent on uniaxial and biaxial stretching. Moreover, the incorporation of clay to some extent influenced the orientation of the crystal unit cell axes (a, b, and c) of the oriented films. The silicate layers revealed a much higher orientation into the flow direction in the uniaxially stretched films compared to the biaxially drawn samples. In addition, the orientation of the 001 plane of nanoclays was significantly greater in the PLA compared to the PP nanoclay composite films probably due to a better intercalation and stress transfer in the former. Morphological pictograms illustrating the effects of uniaxial and biaxial stretching on the clay orientation are proposed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
To improve the crystallization rate and melt strength of polylactide (PLLA), nano‐size amino silica grafted by four‐arm PLLA (4A‐PLLA) with different molecular weight was synthesized. 1H nuclear magnetic resonance proved that 4A‐PLLA had been grafted onto the surface of SiO2 successfully, and the grafting ratios and the degradation behaviors of the grafted SiO2 nanoparticles (g‐SiO2) were studied. When the grafted silica was introduced into PLLA matrix, the crystallization rate and melt strength of composites were found to be improved and the length of grafted chain played an important role. The extension rheology indicated that long grafted 4A‐PLLA on the surface of SiO2 was more efficient in enhancing the elongational viscosity of PLLA, owing to the stronger interactions between the grafted chains and the matrix. The crystallization behavior of ungrafted silica filled composite was similar to that of neat PLA, while g‐SiO2 played a role of nucleating agent. The crystallinities and the crystallization rates of the composites depended on the content of g‐SiO2 and the grafted chain length of 4A‐PLLA, especially the latter. Longer grafted chain acted as nucleation site in the matrix and significantly improved the crystallization behaviors of PLLA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45675.  相似文献   

13.
A modified clay/polylactide nanocomposite was prepared. The clay was modified by grafting polylactide chains onto the surface of clay. The modified clay was melt‐compounded with a high‐molecular‐weight polylactide matrix. This novel clay/polylactide nanocomposite showed high shear‐thinning behavior when the molecular weight of the grafted poly(L ‐lactide) was rather high. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1664–1669, 2006  相似文献   

14.
通过改变升降温循环次数、热历史消除时间及温度,研究了剪切作用力对聚乳酸树脂原料及流延片结晶行为的影响规律。结果表明,聚乳酸的结晶行为受其分子的缠结状态或相对有序程度的影响,在剪切作用力的影响下,聚乳酸分子解缠结或者相对有序程度提高,因此更容易出现冷结晶过程。  相似文献   

15.
The structure and properties of incompatible polylactide (PLA)/polyamide elastomer (PAE) blends were tailored by a chain extender specifically the styrene–glycidyl acrylate copolymer Joncryl ADR4368 (ADR). Various PLA/PAE/ADR blends with different compositions were prepared by melt blending, and their morphology, crystallization behavior, and mechanical and the shape memory properties were systematically investigated. The results showed a uniform dispersion of PAE particles in the PLA matrix for the PLA blends with a reduction in particle size upon the addition of ADR. The crystallization of PLA was retarded, which was confirmed by a decrease in the melt crystallization temperature and an increase in cold crystallization temperature in the PLA/PAE/ADR blends. Rheological analysis showed an improvement in the melt elasticity of the PLA/PAE binary blend due to the presence of ADR, possibly attributed to the formation of long-chain-branched copolymers at the interface. Notably, the PLA/PAE/ADR blend exhibited superior toughness, featuring an elongation at break of 288% and a notched impact strength of 37 kJ·m−2, along with a high shape memory fixation rate and recovery rate when the ADR content was 1 wt%. Furthermore, the underlying toughening mechanism was elucidated. This work may offer an industrially scalable relevant model to fabricate high-performance PLA materials.  相似文献   

16.
To modify the degradability and improve the hydrophilicity of polylactic acid (PLA), collagen‐modified polylactide (CPLA) was synthesized by means of grafting modification method including chloridization and aminolysis, and its structure was characterized by FTIR, 1H NMR, and fluorescein isothiocyanate‐labeled fluorescence spectra. Subsequently, the hydrophilicity and degradation behavior of CPLA were characterized. Finally, CPLA was used as a carrier for the preparation of the trypsin sustained release microspheres via the emulsion‐solvent evaporation technique, followed with its characterization. Results showed that the collagen had been grafted into PLA and the graft ratio of collagen measured about 6.7%. Water absorption behavior test indicated that the hydrophilicity of CPLA was significantly higher than PLA. Furthermore, degradability test revealed that the degradation behavior of PLA was obviously modified and there was no obvious acid‐catalyzed self‐accelerating degradation behavior in the degradation process of CPLA. It was also indicated that the encapsulation efficiency and drug content in trypsin‐loaded CPLA microspheres were all clearly higher than trypsin‐loaded PLA microspheres. The results suggested that CPLA showed a great potential as matrix for drug delivery. POLYM. COMPOS., 36:88–93, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
Stereocomplex‐type poly(lactic acid)‐ [PLA]‐ based blends were prepared by solution casting of equimolar PLLA/PDLA with different amounts of organo‐modified montmorillonite. The homocrystallization and stereocomplexation of PLAs were enhanced by annealing of the blends. The stereocomplexation of PLAs, intercalation of the polymer chains between the silicates layers, and morphological structure of the filled PLAs were analyzed by wide‐angle X‐ray diffraction and transmission electron microscope. Thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), and tensile test were performed to study the thermal and mechanical properties of the blends. The homo‐ and stereocomplex crystallization of neat PLLA/PDLA were enhanced by annealing. The effect of annealing on the crystallization was emphasized by the addition of clay. With this structural change, thermal stabilities properties were also improved by the addition of clay. The silicate layers of the clay were slightly stacked but intercalated and distributed in the PLA‐matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Polypropylene (PP) nanocomposites were prepared by melt intercalation in an intermeshing corotating twin‐screw extruder. The effect of molecular weight of PP‐MA (maleic anhydride‐ modified polypropylene) on clay dispersion and mechanical properties of nanocomposites was investigated. After injection molding, the tensile properties and impact strength were measured. The best overall mechanical properties were found for composites containing PP‐MA having the highest molecular weight. The basal spacing of clay in the composites was measured by X‐ray diffraction (XRD). Nanoscale morphology of the samples was observed by transmission electron microscopy (TEM). The crystallization kinetics was measured by differential scanning calorimetry (DSC) and optical microscopy at a fixed crystallization temperature. Increasing the clay content in PP‐ MA330k/clay, a well‐dispersed two‐component system, caused the impact strength to decrease while the crystallization kinetics and the spherulite size remained almost the same. On the other hand, PP/PP‐MA330k/clay, an intercalated three‐component system containing some dispersed clay as well as the clay tactoids, showed a much smaller size of spherulites and a slight increase in impact strength with increasing the clay content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1562–1570, 2002  相似文献   

19.
Nanocomposites were prepared by adding montmorillonite clay to a high‐density polyethylene matrix. Their structure, morphology, thermal behavior, and physical– mechanical properties were studied. The filler did not alter much the structure and morphology of the matrix, with the exception of a disruptive effect on the lamellar stacks. The crystallization behavior, equilibrium melting temperature, and work of chain folding of the nanocomposites were also unaltered with respect to that of the PE base polymer. However, significant improvements in physical–mechanical properties were observed. The reason for this increase in performance was ascribed to the interaction between the filler and the matrix, especially because of a reduction in size of the original tactoids to stacks of just a few layers, albeit not intercalated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Biodegradable polylactide (PLA)/layered silicate nanocomposites have been prepared via solution route using two different kinds of organically modified nanoclays. The nanostructure as observed from wide‐angle X‐ray diffraction indicates intercalated hybrids and the extent of intercalation depends on the type of organic modifiers used. Melt‐quenched PLA and its nanocomposites are predominantly amorphous but, after annealing, they are fairly crystalline. The nanohybrids show significant improvement in thermal properties as compared to neat polymer. The nature of interaction between nanoclays and matrix polymer depends on the organic modifiers used, as evident from varying heat of fusion and shifting of Fourier transform infrared peaks. The nanoclays act as nucleating agent, and thereby, control the spherulite dimension of the matrix. The comparison of biodegradation of PLA and its nanocomposites has been studied in enzyme, compost, and buffer solution. Biodegradability of PLA has significantly been enhanced in the presence of nanoclays and the rate varies on organic modifications. The surface morphology, before and after enzymatic degradation, confirms the relative rate of degradation through laser scanning confocal images, scanning electron microscope, and atomic force microscope. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号