首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monomer 7-hydroxy-4-methyl-8-(4′-allyloxypiperazin-1′-yl) methylcoumarin with blue fluorescence was synthesized. The present investigation dealt with the synthesis and characterization of a coumarin monomer, containing a piperazine group. Then it was copolymerized with N-vinylpyrrolidone to obtain a water-soluble fluorescent copolymer (poly(Al-HMPC-co-VP)). The fluorescence characteristics of the polymer as a function of pH sensor were investigated in aqueous solution. It was found that the polymer displayed sensitive fluorescence signal amplification over a wide pH scale, which was ascribed to a photoinduced electron transfer from the piperazine receptor to the coumarin fluorophore. In addition, the influence of metal cations on the fluorescence intensity of poly(Al-HMPC-co-VP) were also studied. Obvious fluorescence enhancement was due to the photophysical response of the polymer to the presence of Ni2+ ion. The results suggest that copolymer may offer potential application as a reusable polymer for sensor protons and Ni2+ ion in aqueous solution.  相似文献   

2.
BACKGROUND: In recent years, environmental pollution has become a major concern for industrial societies. The design of highly selective and sensitive sensor materials has become a very important scientific goal. RESULTS: A novel 4‐amino‐substituted 1,8‐naphthalimide dye with intense green fluorescence was synthesized. The dye was then copolymerized with methyl methacrylate. The presence of metal cations (Ca2+, Mg2+, Cr3+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) could quench the fluorescence intensity of a tetrahydrofuran solution of the dye and the copolymer at different levels. The effect of Fe3+ was much stronger than that of the other cations. There was a good linear correlation between F0/F (F0 and F are the fluorescence intensities in the absence and presence of the metal ions, respectively) and the Fe3+ concentration in the range 1.33 × 10?7–4.00 × 10?4 mol L?1. The polymeric sensor in a film state exhibited a dynamic response to Fe3+ in the concentration range from 3.44 × 10?6 to 3.04 × 10?3 mol L?1 and the average response time was about 20 s. CONCLUSION: In view of the selectivity and rapid responsivity of the polymer sensor studied, it could be used as a new polymeric sensor for water pollution by Fe3+ cations. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
A fluorescent conjugated polymer was synthesized by the polymerization of 1,4‐dibromo‐2,3‐bisbutoxynaphthalene ( M‐2 ) with 5,5′‐divinyl‐2,2′‐bipyridine ( M‐3 ) via Heck reaction. The conjugated polymer shows strong blue–green fluorescence because of the extended π‐electronic structure between the repeating unit 2,3‐bisbutoxynaphthyl group and the conjugated linker 2,2′‐bipyridyl (bpy = 2,2′‐bipyridine) moiety via vinylene bridge. The responsive properties of the conjugated polymer on transition metal ions were investigated by fluorescent and UV–vis spectra. The results show that Cu2+ and Ni2+ can form nonradiative metal‐to‐ligand charge‐transfer complexes with the polymer, whereas, Zn2+ and Cd2+ do not produce the pronounced differences from the polymer fluorescence and UV–vis spectra. The fluorescent quenching can probably be attributed to the intramolecular photoinduced electron transfer (PET) or photoinduced charge transfer (PCT). The results can also suggest that 2,2′‐bipyridyl moiety in the main chain backbone of the conjugated polymer can act as the recognition site of a special fluorescent chemosensor for sensitive detection of transition metal ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A novel water‐soluble colored polymer, based on 1,8‐naphthalimide, was synthesized through a series of easy reactions with high yields. It emitted green fluorescence both in an aqueous solution and in a solid state. Fluorescence characteristics of the polymer as a function of pH were investigated in aqueous solutions. The polymer solution showed weaker fluorescence in a more acidic medium. When the pH of the solution was higher than 5, stronger fluorescence could be seen with a pKa value of 3.5. The presence of metal cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) could quench the fluorescence intensity of an aqueous solution of this polymer to different levels. It was highly sensitive to Cu2+ and Fe3+ present in the studied system. The results suggest that this newly synthesized compound could work as a polymeric sensor responding to water polluted by Cu2+, Fe3+, and protons. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A novel polymeric ligand having 2,2′:6′,2″‐terpyridine as pendant group was prepared through a Williamson type etherification approach for the reaction between 4′‐hydroxy‐2,2′: 6′,2″‐terpyridine and the commercially available 4‐chloromethyl polystyrene. The chelating properties of the new polymer toward the divalent metal ions (Cu2+, Zn2+, Ni2+, and Pb2+) in aqueous solutions was studied by a batch equilibration technique as a function of contact time, pH, mass of resin, and concentration of metal ions. The amount of metal‐ion uptake of the polymer was determined by using atomic absorption spectrometry. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Pb2+ and that the metal‐ion uptake follows the order: Pb2+ > Cu2+ > Zn2+ > Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
In the current study, poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium), poly(VP‐co‐AMPS), was prepared and used for the removal of Cu2+, Cd2+, and Ni2+ ions via a polymer‐enhanced ultrafiltration (PEUF) technique. The copolymer was synthesized by radical polymerization in an aqueous medium with a comonomer feed composition of 50:50 mol %. The molecular structure of the copolymer was elucidated by ATR‐FTIR and 1H NMR spectroscopy, and the average molecular weight was obtained by GPC. The copolymer composition was determined to be 0.42 for VP and 0.58 for AMPS by 1H NMR spectroscopy. The copolymer and homopolymers exhibited different retention properties for the metal ions. PAMPS exhibited a high retention capacity for all of the metal ions at both pH values studied. PVP exhibited selectivity for nickel ions. Poly(VP‐co‐AMPS) exhibited a lower retention capacity compared to PAMPS. However, for poly(VP‐co‐AMPS), selectivity for nickel ions was observed, and the retention of copper and cadmium ions increased compared to PVP. The homopolymer mixture containing PAMPS and PVP was inefficient for the retention of the studied metal ions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41272.  相似文献   

7.
A chiral conjugated polymer can be obtained by the polymerization of (S)‐6,6′‐dibromo‐2,2′‐binaphtho‐20‐crown‐6 and 1,4‐divinyl‐2,5‐dibutoxybenzene via a palladium‐catalyzed Heck cross‐coupling reaction. The chiral conjugated polymer shows strong green‐blue fluorescence. The responsive properties of the chiral polymer to metal ions were investigated using fluorescence and UV‐visible absorption spectra. K+, Pb2+, Cd2+ and Ba2+ enhance the fluorescence of the polymer; in contrast, Hg2+ causes effective quenching of the fluorescence of the polymer. The obvious influences on the fluorescence indicate that the 2,2′‐binaphtho‐20‐crown‐6 moiety plays an important role in fluorescence recognition for Hg2+ due to the effective photo‐induced electron transfer or charge transfer between the conjugated polymer backbone and the receptor ions. The responsive properties of the polymer to metal ions show that the chiral conjugated polymer incorporating 2,2′‐binaphtho‐20‐crown‐6 moieties in the main‐chain backbone as recognition sites can act as an excellent fluorescent probe for the sensitive detection of Hg2+. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Development of new chemosensors that are selective and sensitive to Cu2+ and CN? ions, especially in aqueous media, is of tremendous importance. We report the synthesis of a new block copolymer that is capable of highly selective and sensitive detection of Cu2+ and CN? ions in aqueous media. Poly(t‐butylacrylate)‐block‐poly(3‐bromopropylacrylate) was prepared using the reversible addition–fragmentation chain transfer polymerization technique. This block copolymer was reacted with 2,4‐dihydroxybenzaldehyde followed by reaction with rhodamine B hydrazide for successful incorporation of the desired rhodamine units into the block copolymer structure. Cu2+‐induced opening of the spirolactam ring of the rhodamine units resulted in rapid and easily noticeable colour change, thus enabling a highly selective detection of Cu2+ ions in aqueous media for concentrations as low as 2 µmol L?1. We further demonstrate that this Cu2+ bound polymer complex can further act as a selective and sensitive sensing platform for CN? in aqueous media with concentrations <1 µmol L?1 (0.06 ppm). Moreover, the polymer can also be used to remove Cu2+ from aqueous media. © 2014 Society of Chemical Industry  相似文献   

9.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

10.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

11.
In this article, graft copolymerization of N‐vinyl‐2‐pyrrolidone onto xanthan gum initiated by potassium peroxydiphosphate/Ag+ system in an aqueous medium has been studied under oxygen free nitrogen atmosphere. Grafting ratio, grafting efficiency, and add on increase on increasing the concentration of potassium peroxydiphosphate (2.0 × 10?3 to 12 × 10?3 mol dm?3), Ag+(0.4 × 10?3 to 2.8 × 10?3 mol dm?3), and hydrogen ion concentration from 2 × 10?3 to 14.0 × 10?3 mol dm?3. Maximum grafting has been obtained when xanthan gum and monomer concentration were 0.4 g dm?3 and 16 × 10?2 mol dm?3, respectively, at 35°C and 120 min. Water swelling capacity, swelling ratio, metal ion uptake, and metal retention capacity have also been studied, and it has been found that graft copolymer shows enhancement in these properties than pure xanthan gum. The graft copolymer has been characterized by FTIR and thermal analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
An acrylic monomer bearing xanthene group, acryloylfluorescein (Ac-Flu) was synthesized from fluorescein and acryloyl chloride in the presence of triethylamine in dry dichloromethane (CH2Cl2) at room temperature. The synthesized Ac-Flu was identified by IR, MS and 1HNMR spectra. Copolymer of Ac-Flu and acrylamide (AM) was synthesized with thermal initiator and it was characterized by the method of IR, UV–Vis and DSC. The photophysical behaviors of Ac-Flu and its copolymer were explored by recording the fluorescence spectra in solution, solid state and film in detail. In addition, the ability of the copolymer to detect different metal cations (Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) in aqueous solution was investigated. The results showed that poly(Ac-Flu-co-AM) had a good linear response between the logarithm of concentration of Fe3+ (lg[Fe3+]) against the relative fluorescence intensity for Fe3+ concentration. The results suggest that this copolymer may offer potential as a reusable polymer sensor for Fe3+ ion in aqueous solution.  相似文献   

13.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The chelation behavior of poly(2‐hydroxy‐4‐acryloyloxybenzophenone) [poly(2H4ABP) or polymer I ] obtained through the free‐radical polymerization of 2‐hydroxy‐4‐acryloyloxybenzophenone monomer and for crosslinked polymers prepared from the monomer and known amounts of the crosslinker divinylbenzene (DVB) [4 mol % of DVB for polymer II, 8 mol % of DVB for polymer III, and 16 mol 16% of DVB for polymer IV ] toward the divalent metal ions Cu2+, Ni2+, Zn2+, and Pb2+ in aqueous solution was studied by a batch equilibration technique as a function of contact time and pH. The effect of the crosslinker, DVB, was also studied. The metal‐ion uptake of the polymers was determined with atomic absorption spectroscopy, and the highest uptake was achieved at pH 7.0 for polymers I, II, III, and IV. The selectivity and binding capacity of the resins toward the investigated divalent metal ions are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
Copolymers (8‐HQ5‐SAOF) were synthesized by the condensation of 8‐hydroxyquinoline 5‐sulphonic acid (8‐HQ5‐SA) and oxamide (O) with formaldehyde (F) in the presence of acid catalyst. Four different copolymers were synthesized by using varied molar proportion of the reacting monomers. Copolymer resin composition has been determined on the basis of their elemental analysis and average molecular weights of these resins were determined by conductometric titration in nonaqueous medium. Viscometric measurement in dimethyl sulphoxide (DMSO) has been carried out with a view to ascertain the characteristic functions and constants. Electronic spectra, FTIR, and proton nuclear magnetic resonance spectra were studied to elucidate the structures. The newly synthesized copolymer proved to be a selective chelating ion‐exchange copolymer for certain metals. The chelating ion‐exchange properties of this synthesized copolymer was studied for different metal ions such as Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, and Pb2+. A batch equilibrium method was used in the study of the selectivity of metal ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion only for representative copolymer 8‐HQ5‐SAOF‐I due to economy of space. The study was carried out over a wide pH range, shaking time, and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+, Cu2+, and Ni2+ ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Two novel yellow-green emitting 1,8-naphthalimides, containing a 4-amino-2,2,6,6-tetramethylpiperidinyl moiety, were configured as “fluorophore–spacer–receptor” systems. The photophysical characteristics of the dyes were investigated in both DMF and water/DMF (4:1, v/v) solutions. The ability of the new compounds to detect cations was evaluated by means of the changes in their fluorescence intensity imparted by the presence of transition metal ions (Cu2+, Pb2+, Zn2+, Ni2+) and protons. The presence of metal ions and protons was found to disallow photoinduced electron transfer resulting in enhanced fluorescence intensity. The results clearly show that only Cu2+ ions and protons were effectively detected, indicating the potential of the novel compounds as highly efficient “off–on” switchers for Cu2+ ions and protons.  相似文献   

17.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Some aspects of the enol‐imine to keto‐enamine photoisomerism and fluorescent behavior of the new monomer with urethane and anil units in its structure, namely, methacryloyloxyethyl‐2‐carbamoyloxy(m‐methyl, o‐hydroxybenziliden)aniline (UAN), were studied comparatively with the corresponding copolymer poly (methacryloyloxyethyl‐2‐carbamoyloxy(m‐methyl, o‐hydroxybenziliden)aniline)‐co‐methyl methacrylate) (COP‐UAN). The structure, thermal properties, and morphology of the anil compounds were investigated by Fourier transform infrared, proton nuclear magnetic resonance, fluorescence spectroscopies, UV spectrophotometry, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy. The photochromic behavior of salicylideneanil units was investigated by UV/laser irradiation, and an inspection of their photophysical properties suggested that such structures could function as fluorescent chemosensors for some transition metals, a fluorescence quenching in the presence of different metal cations (Fe3+, Fe2+, Cu2+, and Ni2+) being evidenced. The direct observation of an enhancement in the fluorescence emission caused of the presence of Zn2+ (solution) or Fe2+, Cu2+, and Zn2+ (thin film) would be rather suitable for the production of turn‐on fluorescent chemosensors. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
The chemical oxidative copolymerization of 3,4‐ethylenedithiathiophene (EDTT) with 3,4‐ethylenedioxythiophene (EDOT) and 2′‐hydroxymethyl‐3,4‐ethylenedioxythiophene in a poly(styrene sulfonic acid) aqueous solution was successfully carried out to form stable, dark blue colloidal dispersions in water. Coating these dispersions onto polypropylene substrates led to the formation of free‐standing copolymer films. The mechanical, electrical, and thermoelectrical properties of these films were investigated; the films showed superior properties in comparison with those of poly(3,4‐ethylenedithiathiophene) (PEDTT)/poly(styrene sulfonate) (PSS). The copolymer film based on EDTT and EDOT achieved a high electrical conductivity (8.2 × 10?2 S cm?1) at 298 K; this could be improved about 10 times through the addition of dimethyl sulfoxide (DMSO) or DMSO/isopropyl alcohol into the polymer dispersion with almost constant Seebeck coefficients of about 9 μV K?1. On the contrary, these additives had almost no effect on the conductivity of PEDTT/PSS. The structure and morphology of the polymer films were studied by X‐ray diffraction and SEM analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
N‐heterocyclic acrylamide monomers were prepared and then transferred to the corresponding polymers to be used as an efficient chelating agent. Polymers reacted with metal nitrate salts (Cu2+, Pb2+, Mg2+, Cd2+, Ni2+, Co2+, Fe2+) at 150°C to give metal‐polymer complexes. The selectivity of the metal ions using prepared polymers from an aqueous mixture containing different metal ion sreflected that the polymer having thiazolyl moiety more selective than that containing imidazolyl or pyridinyl moieties. Ion selectivity of poly[N‐(benzo[d]thiazol‐2‐yl)acrylamide] showed higher selectivity to many ions e.g. Fe3+, Pb2+, Cd2+, Ni2+, and Cu2+. While, that of poly[N‐(pyridin‐4‐yl)acrylamide] is found to be high selective to Fe3+ and Cu2+ only. Energy dispersive spectroscopy measurements, morphology of the polymers and their metallopolymer complexes, thermal analysis and antimicrobial activity were studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42712.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号