首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT:  Differential scanning calorimetry (DSC) and dynamic oscillatory shear testing were performed to study the influence of inulin (Raftiline® HP-gel and Raftiline® ST-gel) and oligofructose (Raftilose® P95) on the thermal stability and gelation (using glucono-δ-lactone [GDL] as a coagulant) of soy protein isolate (SPI) dispersions. Addition of 10% (w/v) inulin/oligofructose or sucrose increased ( P < 0.05) the peak denaturation temperatures ( Tm ) of 7S and 11S soy proteins in SPI dispersion (5%[w/v], pH 7.0) by an average of 1.9 and 2.3 °C, respectively. GDL induced SPI thermal gelation, and the gel rheology was affected by both the pH decline and the specific temperature of heating. Addition of inulin/oligofructose (8%, w/v) improved the gelling properties of preheated SPI dispersion (8%, w/v) coagulated with GDL, showing 14.4 to 45.6% increase ( P < 0.05) in gel rigidity ( G ' value) at the end of heating (81 °C). Microstructural examination revealed a denser protein cross-linking structure and reduced pore sizes in SPI gels containing inulin/oligofructose. In general, inulin was more capable of improving SPI gelation than oligofructose, suggesting that the degree of fructose polymerization in the fructans was of thermal and rheological importance.  相似文献   

2.
凝固剂及凝固条件对大豆蛋白胶凝性质的影响   总被引:7,自引:0,他引:7  
以大豆蛋白的凝胶强度、持水性、凝固速率这3个胶凝特性为主要指标,测定了包括蛋白浓度、热处理温度和时间、凝固剂种类和添加量、pH值、离子强度在内的这些因素对上述胶凝性质的影响,并确定了最优凝固工艺条件:质量浓度60g/L的SPI溶液经95℃热处理15min后,分别以质量分数0.4%熟石膏(CaSO4·1/2H2O)和质量分数0.28%葡萄糖酸内酯(GDL)作为凝固剂,保温30min后,冷却至室温;最佳离子强度为0.01mol/L(NaCl)。  相似文献   

3.
The effects of protein concentration and locust bean gum (LBG) addition on the mechanical properties, microstructure and water holding capacity of acidified soy protein (SPI) gels were studied. The protein was employed in two different states: (i) native and (ii) heat denatured. A slow acidification rate was induced in both systems by applying glucono‐δ‐lactone (GDL). The results indicated that the gels of native SPI were weaker, less deformable and showed lower water holding capacity than the gels of heat‐denatured SPI. The LBG addition led to an increase in the strength and water holding capacity of SPI gels, independent of the protein state (native or denatured). These results indicated that the properties of texture and water holding capacity of the SPI acid gels can be modulated by the process conditions or by the addition of other ingredients, such as polysaccharides.  相似文献   

4.
The aim of this study was to apply an edible coating containing prebiotics such as oligofructose and inulin to fresh-cut apple wedges. An assessment of the quality, sensory, polyphenol, and volatile attributes of coated and uncoated fresh-cut apple wedges was also undertaken. Fructan analysis showed that all prebiotics remained stable over the 14-d storage period and an intake of 100 g of apple supplies 1 to 3 g of prebiotics. Browning index, firmness, acidity remained stable throughout the 14 d compared to the control while applying prebiotic coatings resulted in an increase in soluble solids. Sensory and visual assessment indicated acceptable quality of apple wedges coated with prebiotics. HPLC analysis showed that levels of polyphenolic compounds were more stable in coated apple wedges (without prebiotic inclusions) than in uncoated control apples. No difference was found between O(2) and CO(2) headspace concentration of coated and uncoated samples. Significant differences (P < 0.001) were found for headspace volatile production between the samples. Most coated samples showed lower volatile production in the headspace than uncoated samples.  相似文献   

5.
Inulin and oligofructose are prebiotic oligosaccharides fermented in the large intestine. This article provides an extensive review of the effects of these oligosaccharides on gastrointestinal characteristics (microflora, pathogen control, epithelial cell proliferation, putrefactive compound production, fecal characteristics, and nutrient digestibility) and systemic metabolism of carbohydrates, nitrogen, lipids, and minerals in dogs, cats, horses, calves, pigs, poultry, and rabbits. In addition, intake of inulin and oligofructose and considerations in their supplementation to animal diets are discussed. Growth performance and meat production in livestock in response to inulin and oligofructose supplementation are addressed. Finally, the possible substitution of antibiotics with fructans in animal diets and directions for future research are presented.  相似文献   

6.
ABSTRACT:  The effects of supplementation of oligofructose or inulin on the rheological characteristics and survival of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in low-fat ice cream stored at –18 °C for 90 d were studied. Addition of oligofructose or inulin to ice cream mix significantly increased apparent viscosity and overrun and developed the melting properties in ice cream during storage ( P < 0.05). However, the highest increase in firmness, the lowest change in melting properties, and the longest 1st dripping time were obtained in probiotic ice cream containing inulin ( P < 0.05). Some textural properties have also improved especially by the end of storage. Freezing process caused a significant decrease in the viability of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 ( P < 0.05). Oligofructose significantly improved the viability of L. acidophilus La-5 and B. animalis Bb-12 in ice cream mix ( P < 0.05). Although the viable numbers for both bacteria decreased throughout the storage, the minimum level of 106 CFU/g was maintained for B. animalis Bb-12 in only ice cream with oligofructose during storage.  相似文献   

7.
为探讨TGase酶对大豆与小麦混合蛋白凝胶性质的影响,本文研究了小麦蛋白的加入前后混合蛋白凝胶功能性质的变化规律。通过研究TGase酶添加量、反应温度、反应pH对混合蛋白凝胶特性的影响可知:蛋白浓度为11%(11 g/100 mL)保持不变,TGase酶添加量为30 U/g,反应温度为40℃,反应pH为7.0时,TGase酶对混合蛋白凝胶特性改善效果最强。对比小麦蛋白加入前后蛋白凝胶的性质,发现小麦蛋白的添加使得蛋白结构的β-折叠含量升高,游离巯基含量减少,凝胶弹性模量(G’)增强,形成了更为多空且紧密有序的三维网络结构,使得混合蛋白的凝胶性能显著增强(p<0.05)。   相似文献   

8.
The objective of this study was to better understand the gelation behaviour of a mixed soya milk–cow's milk system, by forming different reactive protein particles using rennet and glucono‐δ‐lactone. The formation of the structure of these mixed gels was followed, for the first time, using diffusing wave spectroscopy and rheology. When only one protein source was induced to gel, protein aggregation was hindered, as shown by the slower increase in apparent radius after the gel point. Confocal microscopy analysis of the gel networks suggested that while milk gels exhibited large pores with interconnecting strands of protein, soya gels appeared as densely packed protein aggregates, and mixed soya milk gels appeared as a network of aggregated proteins. This study demonstrated that by modulating the reactivity of the building blocks, it is possible to fine‐tune structure formation of these mixed protein gels.  相似文献   

9.
This article provides a systematic study of the impact of different thermal treatments (62 ± 2°C, without and with relative humidity control, 79%) on soy protein in defatted soy flour and their aqueous dispersions. The effect of dispersing treatments (magnetic stirring, high-speed, and high-pressure homogenization) on dispersions also was assessed. Changes in protein solubility (water and 0.2 g/100 g potassium hydroxide solution), apparent-reactive lysine content, urease and trypsin inhibitor activities, protein denaturation, and Fourier transform infrared spectra were studied. Glycosylation, aggregation, and denaturation of storage and biologically active soy proteins were observed in different degrees, being mainly promoted by the control of relative humidity and the dispersibility of the sample.  相似文献   

10.
11.
12.
To improve the quality of meat products is a constant focus for both the meat industry and scientists. As major components in meat protein, the gelation properties of myofibrillar proteins (MPs) predominantly determine the sensory quality and product yield of the final product. Naturally or artificially occurring covalent modifications are known to largely affect MP functionality by changing the protein structure and forming aggregates, leading to both favorable and unfavorable outcomes. The review aims to summarize the mechanisms associated with several covalent modifications and the recent developments in enhancing MP gelation properties. Various extrinsic and intrinsic parameters controlling oxidation, phenolic–protein interactions, enzyme catalysis, glycation, and isoelectric solubilization/precipitation, and their effects on the characteristics of heat-induced MP gels are discussed. This article provides an improved understanding of the covalent modifications that occur mainly in the MP system and how they can be utilized to promote its gelation properties. Covalent modifications exhibited dose-dependent and dual-role manners for MP gelation properties. Mild oxidation, enzyme catalysis, and isoelectric solubilization/precipitation treatment would be beneficial to form more aligned and cross-linked three-dimensional networks for MP gels because of moderate protein aggregation. However, an excessive aggregate impedes the MP gelation behavior, leading to reduced gelation quality. Glycation effectively increased hydrophilicity of MPs and phenolic conjugation provides MPs with novel bioactivity. A proper utilization of such a process or even a rational combination of them allowed us to enhance the gelation properties of MP with assorted appreciated functionalities and further improve the quality of meat products.  相似文献   

13.
A solution of heat‐denatured whey proteins was prepared by heating 100 g kg−1 whey protein isolate (WPI) at pH 7.0 to 75 °C for 15 min in the absence of salt. Heat treatment caused the globular protein molecules to unfold, but electrostatic repulsion opposed strong protein–protein aggregation and so prevented gel formation. When the heat‐denatured whey protein solution was cooled to room temperature and mixed with 15 mM CaCl2, it formed a gel. We investigated the influence of the presence of sucrose in the protein solutions prior to CaCl2 addition on the gelation rate. At relatively low concentrations (0–100 g kg−1), sucrose decreased the gelation rate, presumably because sucrose increased the aqueous phase viscosity. At higher concentrations (100–300 g kg−1), sucrose decreased the gelation rate, probably because sugar competes for the water of hydration and therefore increases the attraction between proteins. These data have important implications for the application of cold‐setting WPI ingredients in sweetened food products such as desserts. © 2000 Society of Chemical Industry  相似文献   

14.
大豆蛋白预先热聚集对其凝胶性质的影响   总被引:7,自引:0,他引:7  
在大豆蛋白聚集体与天然大豆蛋白混合的基础上,研究了聚集体对其葡萄糖酸内酯凝胶质构及流变性质的影响,结果表明:快速加热时pH下降迅速,且凝胶点的pH值比慢速加热要高;聚集体的添加可以增加凝胶硬度;快速加热可以降低持水率,慢速加热时结果相反;凝胶温度随聚集体添加量的增大而减小。  相似文献   

15.
The role of soluble and insoluble aggregates induced by soy protein isolate (SPI) processing in the gelling properties of myofibrillar protein (MP) was studied. Incorporating soluble SPI aggregate could greatly improve (< 0.05) the elastic modulus (G’) and water‐holding capacity (WHC) of MP gel, but had no notable effect on MP gel strength. In contrast, incorporating the insoluble SPI aggregate significantly enhanced the G’, strength and WHC of MP gel, although the improvement in WHC was smaller than that produced by the soluble aggregate. The results of environmental scanning electron microscopy showed that the soluble SPI aggregate induced a less randomly composite gel structure, which may explain its notable enhancement of WHC. However, the insoluble SPI aggregate appeared to be granules embedded in the continuous MP gel matrix, which may be related to the reinforcement of gel strength. Hence, the results of this study suggest further means of processing commercial SPI for use in meat products.  相似文献   

16.
This work studied for the first time the acid-induced aggregation and gelation of heat-treated chia protein isolates obtained by extraction at pH 10 or 12 (CPI10 and CPI12, respectively). The aggregation state of proteins was modified during acidification. The size of the aggregates was reduced for both samples when the pH decreased but below pH 4.5 further protein aggregation took place for CPI12. Gelation of CPI12 was completed after about 30 min of acidification with glucone-δ-lactone. By contrast, this period was not enough to reach a constant value in G′ for CPI10. When gelation was ensured, confocal laser scanning micrographs from those gels revealed a coarse and irregular structure with large pores (median size of diameters: 30 μm). Instead, micrographs from CPI12 cold gels showed a more regular and interconnected network, with smaller pores (median size of diameters: 9 μm). These differences are consistent with a higher elastic behaviour ( = 13.6 ± 0.1 Pa).  相似文献   

17.
蛋清蛋白质以其优异的凝胶性能广泛应用于食品加工中,而加工中不同的诱导方式和条件使其形成凝胶的类型及性能均有较大差异,凝胶化机理也有所不同。本文主要从凝胶形成诱导方式及其条件出发,着重介绍热诱导和强碱诱导下蛋清蛋白质凝胶化机理的研究进展,以期为进一步丰富和完善蛋清蛋白质凝胶化机理理论体系的研究提供参考。   相似文献   

18.
以亚油酸氢过氧化物代表脂质氢过氧化物氧化修饰大豆分离蛋白,采用圆二色光谱、内源荧光光谱、粒径分析以及相对分子质量分布研究氢过氧化物氧化修饰对大豆蛋白热变性和聚集的影响.结果发现亚油酸氢过氧化物氧化修饰使得大豆蛋白热稳定性下降,热变性过程中形成聚集体粒径随着蛋白质氧化程度的升高呈现先增加后减小的趋势,热变性大豆蛋白冷却后的粒径和聚集体含量则随着蛋白质氧化程度的增加而下降.  相似文献   

19.
Effects of protein oxidation on thermal aggregation and gel properties of soy protein by 2,2′‐azobis (2‐amidinopropane) dihydrochloride (AAPH)‐derived peroxyl radicals were investigated in this article. Incubation of soy protein to increase concentration of AAPH resulted in a decrease in particle size and content of thermal aggregates during thermal‐induced denaturation. Protein oxidation resulted in a decrease in water‐holding capacity (WHC), gel hardness and gel strength of soy protein gel. An increase in coarseness and interstice of the gel network was accompanied by uneven distribution of interstice as extent of oxidation of soy protein increased. A decrease in disulphide content and formation of oxidation aggregates in the process of oxidative modification were contributed to the decline of particle size and content of thermal aggregates during thermal‐induced denaturation, leading to a decrease in WHC, gel hardness and gel strength of soy protein gel.  相似文献   

20.
The microstructural, physical, and sensory properties of low-fat sauces made with different starches, soy protein, and inulin as a fat replacer were analyzed. Gluten-free waxy starches-rice and corn-were selected as well as soy protein to obtain sauces suitable for celiac and lactose intolerant consumers. Light microscopy was used to visualize the swollen starch granules dispersed in a protein-amylopectin-inulin phase. Inulin seemed to limit protein network development, which was related with a higher dispersion of starch granules within the sauce matrix. Therefore, the sauces made with inulin had a lower apparent viscosity (η(app) ) values (P < 0.05) in comparison with oil sauces. The sauces made with rice starches also exhibited a lower viscosity (P < 0.05) since these granules did not swell as corn granules do. All the sauces had a remarkable physical stability since there were no syneresis phenomena and color did not change significantly (P < 0.05) after 15 d of refrigeration storage (4 °C). Finally, the sensory test suggests that oil could be substituted by inulin in the preparation of low-fat sauces since no significant differences (P < 0.05) in texture and flavor were found. These results encourage further research to optimize the formulations of these types of alternative white sauces. Practical Application: Nowadays there is a great demand of ready-to-eat products due to new consumptions habits. In this context, it would be interesting to develop low-fat sauces with inulin that could be used in this type of products improving their nutritional profile. The requirement of processed food for specific groups of population, such as celiac and lactose intolerant consumers, makes it necessary to use gluten free starches and soy protein in the formulation of sauces. The characterization of structural, physical and sensory properties is required to understand the product acceptability and its behavior during its shelf life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号