首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Superposition principle is used to separate the incident acoustic wave from the scattered and radiated waves in a displacement‐based finite element model. An absorbing boundary condition is applied to the perturbation part of the displacement. Linear constitutive equation allows for inhomogeneous, anisotropic materials, both fluids and solids. Displacement‐based finite elements are used for all materials in the computational volume. Robust performance for materials with limited compressibility is achieved using assumed‐strain nodally integrated simplex elements or incompatible‐mode brick elements. A centered‐difference time‐stepping algorithm is formulated to handle general damping accurately and efficiently. Verification problems (response of empty steel cylinder immersed in water to a step plane wave, and scattering of harmonic plane waves from an elastic sphere) are discussed for assumed‐strain simplex and for voxel‐based brick finite element models. A voxel‐based modeling scheme for complex biological geometries is described, and two illustrative results are presented from the bioacoustics application domain: reception of sound by the human ear and simulation of biosonar in beaked whales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
It is well known that solutions for linear partial differential equations may be given in terms of fundamental solutions. The fundamental solutions solve the homogeneous equation exactly and are obtained from the solution of the inhomogeneous equation where the inhomogeneous term is described by a Dirac delta distribution. Fundamental solutions are the building blocks of the boundary element method and of the method of fundamental solutions and are traditionally used to build boundary‐only global approximations in the domain of interest. In this work the same characteristic of the fundamental solutions, that of solving the homogeneous equation exactly, is used but not to build a global approximation. On the contrary, local approximations are built in such a manner that it is possible to construct finite difference operators that are free from any form of structured grid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is devoted to the analysis of elastodynamic problems in 3D‐layered systems which are unbounded in the horizontal direction. For this purpose, a finite element model of the near field is coupled to a scaled boundary finite element model (SBFEM) of the far field. The SBFEM is originally based on describing the geometry of a half‐space or full‐space domain by scaling the geometry of the near field / far field interface using a radial coordinate. A modified form of the SBFEM for waves in a 2D layer is also available. None of these existing formulations can be used to describe a 3D‐layered medium. In this paper, a modified SBFEM for the analysis of 3D‐layered continua is derived. Based on the use of a scaling line instead of a scaling centre, a suitable scaled boundary transformation is proposed. The derivation of the corresponding scaled boundary finite element (SBFE) equations in displacement and stiffness is presented in detail. The latter is a nonlinear differential equation with respect to the radial coordinate, which has to be solved numerically for each excitation frequency considered in the analysis. Various numerical examples demonstrate the accuracy of the new method and its correct implementation. These include rigid circular and square foundations embedded in or resting on the surface of layered homogeneous or inhomogeneous 3D soil deposits over rigid bedrock. Hysteretic damping is assumed in some cases. The dynamic stiffness coefficients calculated using the proposed method are compared with analytical solutions or existing highly accurate numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
为提高非均匀材料界面裂纹尖端断裂参数的求解精度,基于非均匀材料界面断裂力学、Cell-Based光滑有限元(Cell-SFEM)和非均匀材料的互交作用积分法,提出了求解非均匀材料界面裂纹尖端断裂参数的CellBased光滑有限元法,推导了基于Cell-Based光滑有限元法的非均匀材料的互交作用积分法,对非均匀材料间的界面裂纹尖端处正则应力强度因子进行了求解,并与参考解进行了比较,讨论了互交积分区域大小和光滑子元个数与正则应力强度因子的关系。数值算例结果表明:本方法具有很高的计算精度,对积分区域大小不敏感,可为设计、制造抗破坏非均匀材料提供依据。  相似文献   

5.
The quasi-static and dynamic responses of a linear viscoelastic beam are solved numerically by using the hybrid Laplace transform/finite element method. In the analysis, the Timoshenko beam theory, which includes the transverse shear and rotatory inertia effect and conventional beam theory, are used to solve this problem. The temperature field is assumed to be constant and homogeneous and that the relaxation modulus has the form of the Prony series. In the hybrid method, the Laplace transform with respect to time is applied to the coupled equations and the finite element model is developed by applying Hamilton's variational principle without any integral transformation. The numerical results of quasi-static and dynamic responses for the models of Maxwell fluid and three parameter solid types are presented and discussed.  相似文献   

6.
A general method to generate assumed stress and strain fields within the context of mixed finite element methods is presented. The assumed fields are constructed in such a way that internal constraints are satisfied a priori. Consequently, the locking behaviour commonly observed in finite element solutions of problems with internal constraints is avoided. To this end, the assumed stress and strain fields are constructed to satisfy a priori the homogeneous part of the equilibrium equations, thus avoiding Fraeijs de Veubeke's limitation principle. Results obtained using the proposed methodology on a nearly incompressible plane strain problem and thin plate application using a shear deformable theory are indicated.  相似文献   

7.
Abstract: The aim of this study is to verify the effectiveness of ordinary phenomenological constitutive relation of NiTi shape memory alloy under mechanical loading at a constant temperature, sufficiently. First, finite element analysis is performed by using ordinary phenomenological constitutive relation for rectangular plate with double notch under tensile loading at a constant temperature. Next, uniaxial tensile loading is carried out for 50.5Ni49.5Ti rectangular plate with double notch. At the same time, macroscopic stress–strain curve and local strain distribution are measured by using in‐house measurement system on the basis of digital image correlation. As a result, it is found that the stress–strain curve obtained from finite element analysis is much different from those obtained experimental measurement, especially during stress‐induced martensite transformation. The result can be derived from the phenomena of local strain band behavior arising in NiTi under mechanical loading. The phenomenological constitutive model used in present finite element analysis is constructed under assumptions that the material has isotropic characteristics and shows homogeneous deformation. However, this experimental result suggests that the material itself has anisotropy microscopically. Furthermore, material shows unique inhomogeneous deformation. Also, there is possibility that these anisotropic characteristic and inhomogeneous deformation behaviour may derive from its microstructure. In future, to sufficiently describe the macroscopic stress–strain curve of NiTi we should take into consideration the material microstructure.  相似文献   

8.
王海涛  杨笑梅 《工程力学》2007,24(3):170-178
为了求解双压电材料在机械荷载和(或)外加电场的作用下,界面裂纹尖端的力电耦合奇异场,提出了一种全数值方法。该全数值方法的实施可以分为两个部分:首先,用一维有限元方法求解不同压电材料界面裂纹尖端力电耦合奇异场特征解;然后,采用杂交有限元列式构造一种所谓的裂纹单元,在该杂交有限元的列式中,假设应力场和电位移场是利用上述一维有限元方法计算得到的特征解推导出来的;利用该单元可以得到全部的力电耦合奇异场的解。通过对单一压电材料中心裂纹尖端力电耦合奇异场的计算,该方法的准确性和高效性得到了验证;进而用该方法研究了双压电材料界面力电耦合场奇异场。  相似文献   

9.
Real world ground water pollution modelling deals with solute transport through anisotropic, heterogeneous media. The applicability of analytical solutions for such a real world system is extremely limited. As an effective tool, numerical models, such as finite difference and finite element methods, are usually employed to model field scenarios. Nevertheless, ground water pollution modelling is a hallenging task and frequently ends up with misleading results. Most of the time insufficient data are blamed for such erratic results. A recent investigation shows that the shortcomings of numerical formulations may be the major cause for many disputes and confusions in numerical analyses. In reality, a point injection of water in a static, homogeneous and isotropic groundwater system shows a radial dissipation of water forming a sphere; and a full-depth line injection shows a radial dissipation forming a cylinder. The finite difference method completely ignores this fundamental flow principles and allows water only to flow along orthogonal directions. To overcome this limitation, the finite element method was developed as a flexible approach in order to connect a node with the neighbouring nodes in various directions where water is assumed to flow in any directions along node connections. In a recent investigation, it has been found that the conventional finite element method does not keep the commitments; and its formulation techniques lead to a global matrix where a solution domain is not connected with all the neighbouring nodes and does not comply with the control-volume mass balance concept. A consistent finite element formulation approach which does not need imaginary mathematical formulation and overcomes the limitations of both the conventional finite difference and finite element methods has been developed. This method allows fluid flow and solute transport in a porous medium in radial directions. The global matrices for flow and transport obtained from this technique are field representative, diagonally dominant and easily convergent. The new method is robust, needs less mathematical computation and has many advantages over the conventional finite difference and finite element methods.  相似文献   

10.
Interface crack problems in graded orthotropic media are considered using analytical and computational techniques. In the analytical formulation an interface crack between a graded orthotropic coating and a homogeneous orthotropic substrate is considered. The principal axes of orthotropy are assumed to be parallel and perpendicular to the crack plane. Mechanical properties of the medium are assumed to be continuous with discontinuous derivatives at the interface. The problem is formulated in terms of the averaged constants of plane orthotropic elasticity and reduced to a pair of singular integral equations which are solved numerically to compute the mixed mode stress intensity factors and the energy release rate. In the second part of the study, enriched finite elements are formulated and implemented for graded orthotropic materials. Comparisons of the finite element and analytical results show that enriched finite element technique is capable of producing highly accurate results for crack problems in graded orthotropic media. Finally, periodic interface cracking and the four point bending test for graded orthotropic solids are modeled using enriched finite elements and the results are briefly discussed.  相似文献   

11.
考虑焊接球节点变形的网壳结构多尺度有限元分析方法   总被引:2,自引:0,他引:2  
为了同时分析焊接球节点的局部受力和网壳的整体受力,根据多尺度有限元法的思想,将焊接球节点以及它所连接的杆件长为S的一小段作为微观尺度模型采用实体单元离散,结构的其余部分作为宏观尺度模型采用梁单元离散。根据经典欧拉梁理论的平截面假定推导了两种尺度模型界面上的位移增量约束方程,并给出了基于Updated Lagrangian法的位移增量约束方程引入方法。给出了S的估计值并采用Zienkiewicz-Zhu后验误差估计理论来确定它是否合理。以考虑节点屈服的单层球面网壳弹塑性静力稳定性分析为例说明了该方法的有效性和可行性。  相似文献   

12.
In the recent years, solid‐shell finite element models which possess no rotational degrees of freedom and applicable to thin plate/shell analyses have attracted considerable attention. Development of these elements are not straightforward. Shear, membrane, trapezoidal, thickness and dilatational lockings must been visioned. In this part of this paper, a novel eight‐node solid‐shell element is proposed. To resolve the shear and trapezoidal lockings, the assumed natural strain (ANS) method is resorted to. The hybrid‐stress formulation is employed to rectify the thickness and dilatational locking. The element is computationally more efficient than the conventional hybrid elements by adopting orthogonal‐assumed stress modes and enforcing admissible sparsity in the flexibility matrix. Popular benchmark tests are exercised to illustrate the efficacy of the elements. In Part II of the paper, the element will be generalized for smart structure modelling by including the piezoelectric effect. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
In this part of paper we shall extend the formulation proposed by Babu?ka and co‐workers for robustness patch test, for quality assessment of error estimators, to more general cases of patch locations especially in three‐dimensional problems. This is performed first by finding an asymptotic finite element solution at interior parts of a problem with assumed smooth exact solution and then adding a correction part to obtain the solution near a kinked boundary irrespective of other boundary conditions at far ends of the domain. It has been shown that the solution corresponding to the correction part may be obtained in a spectral form by assuming a suitable proportionality relation between the nodal values of a mesh with repeatable pattern of macro‐patches. Having found the asymptotic finite element solution, the performance of error estimators may be examined. Although in this paper we focus on the asymptotic behaviour of error estimators, the method described in this part may be used to obtain finite element solution for two/three‐dimensional unbounded heat/elasticity problems with homogeneous differential equations. Some numerical results are presented to show the validity and performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a finite element dislocation model is proposed, based on well‐known mathematical dislocation model. As application examples, the stress distributions around an edge dislocation in infinite homogeneous and inhomogeneous regions are calculated and compared with the analytical results. The FEM results coincide well with the exact solutions. The results show an applicability and a usefulness of finite element dislocation model, and further, a possibility of analysing a dislocation problem in finite region with complicated shapes and boundary conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In a previous paper a modified Hu–Washizu variational formulation has been used to derive an accurate four node plane strain/stress finite element denoted QE2. For the mixed element QE2 two enhanced strain terms are used and the assumed stresses satisfy the equilibrium equations a priori for the linear elastic case. In this paper an alternative approach is discussed. The new formulation leads to the same accuracy for linear elastic problems as the QE2 element; however it turns out to be more efficient in numerical simulations, especially for large deformation problems. Using orthogonal stress and strain functions we derive B̄ functions which avoid numerical inversion of matrices. The B̄ ‐strain matrix is sparse and has the same structure as the strain matrix B obtained from a compatible displacement field. The implementation of the derived mixed element is basically the same as the one for a compatible displacement element. The only difference is that we have to compute a B̄ ‐strain matrix instead of the standard B ‐matrix. Accordingly, existing subroutines for a compatible displacement element can be easily changed to obtain the mixed‐enhanced finite element which yields a higher accuracy than the Q4 and QM6 elements. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A comparison between the recently developed Cosserat brick element (see [9]) and other standard elements known from the literature is presented in this paper. The Cosserat brick element uses a director vector formulation based on the theory of a Cosserat point. The strain energy for a hyperelastic element is split additively into parts for homogeneous and inhomogeneous deformations respectively. The kinetic response due to inhomogeneous deformations uses constitutive constants that are determined by analytical solutions of a rectangular parallelepiped to the deformation modes of bending, torsion and hourglassing. Standard tests are performed which typically exhibit hourglassing or locking for many other finite elements. These tests include problems for beam and plate bending, shell structures and nearly incompressible materials, as well as for buckling under high pressure loads. For all these critical tests the Cosserat brick element exhibits robustness and reliability. Moreover, it does not depend on user-tuned stabilization parameters. Thus, it shows promise of being a truly user-friendly element for problems in nonlinear elasticity.  相似文献   

19.
In this paper two plane strain quadrilateral elements with two and four variables, are proposed. These elements are applied to the analysis of finite strain elasto‐plastic problems. The elements are based on the enhanced strain and B‐bar methodologies and possess a stabilizing term. The pressure and dilatation fields are assumed to be constant in each element's domain and the deformation gradient is enriched with additional variables, as in the enhanced strain methodology. The formulation is deduced from a four‐field functional, based on the imposition of two constraints: annulment of the enhanced part of the deformation gradient and the relation between the assumed dilatation and the deformation gradient determinant. The discretized form of equilibrium is presented, and the analytical linearization is deduced, to ensure the asymptotically quadratic rate of convergence in the Newton–Raphson method. The proposed formulation for the enhanced terms is carried out in the isoparametric domain and does not need the usually adopted procedure of evaluating the Jacobian matrix in the centre of the element. The elements are very effective for the particular class of problems analysed and do not present any locking or instability tendencies, as illustrated by various representative examples. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a finite element method is proposed to analyze the microscopic and macroscopic mechanical behaviors of heterogeneous media with randomly distributed inclusions. A simple mesh partitioned the domain into regular quadrilateral or triangular elements, where one element may contain two phases. An assumed stress hybrid formulation is implemented in the finite element model and the functional is derived for an element containing two phases. Numerical examples were used to study the microscopic and macroscopic properties of the composites, such as the effective modulus, to validate of the proposed model. The results show that the proposed multiphase hybrid stress finite element model can accurately measure the stress fields of materials with arbitrary microstructural distributions and improve computational efficiency by about 30 to 1500 times in comparison with the traditional displacement based finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号