首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The degenerated approach for shell elements of Ahmad and co‐workers is revisited in this paper. To avoid transverse shear locking effects in four‐node bilinear elements, an alternative formulation based on the enhanced assumed strain (EAS) method of Simo and Rifai is proposed directed towards the transverse shear terms of the strain field. In the first part of the work the analysis of the null transverse shear strain subspace for the degenerated element and also for the selective reduced integration (SRI) and assumed natural strain (ANS) formulations is carried out. Locking effects are then justified by the inability of the null transverse shear strain subspace, implicitly defined by a given finite element, to properly reproduce the required displacement patterns. Illustrating the proposed approach, a remarkably simple single‐element test is described where ANS formulation fails to converge to the correct results, being characterized by the same performance as the degenerated shell element. The adequate enhancement of the null transverse shear strain subspace is provided by the EAS method, enforcing Kirchhoff hypothesis for low thickness values and leading to a framework for the development of shear‐locking‐free shell elements. Numerical linear elastic tests show improved results obtained with the proposed formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
针对一点积分的八节点相对自由度壳单元存在的沙漏现象,提出采用拟应变法解决该问题的方法,并对锁死问题进行研究.给出了带有沙漏控制的八节点相对自由度壳元内的坐标、位移插值公式,推导了拟应变的表达式,通过Hu-Washizu变分原理,建立了有限元求解方程.利用Wilson非协调位移模式,单元的计算精度得到了明显改善.算例表明:基于八节点相对自由度壳单元,本文给出的沙漏控制算法能够有效的解决线性静力问题,并且具有较高的计算精度.  相似文献   

4.
5.
6.
    
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
    
The non‐conventional exact geometry shell elements based on the Timoshenko–Mindlin kinematics with five displacement degrees of freedom are proposed. The term ‘exact geometry (EXG)’ reflects the fact that coefficients of the first and second fundamental forms of the reference surface and Christoffel symbols are taken exactly at every Gauss integration point. The choice of only displacements as fundamental shell unknowns gives an opportunity to derive strain–displacement relationships, which are invariant under rigid‐body shell motions in a convected curvilinear coordinate system. This paper presents a newly developed family consisting of three hybrid and one displacement‐based four‐node EXG shell elements. To avoid shear and membrane locking and have no spurious zero energy modes, the ANS concept is employed. The ANS interpolations satisfy exactly the plate compatibility equation for in‐plane strains. As a result, all EXG shell elements developed pass membrane and bending plate patch tests and exhibit a superior performance in the case of distorted coarse mesh configurations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
    
The meshless methods, namely the element‐free Galerkin method (EFGM), when they first appeared claimed that volumetric locking and hourglass were avoided. This was not the case and both phenomena occur in the EFGM. In the context of the finite element method (FEM) these phenomena were widely studied. In this work, forms of avoiding the locking phenomenon will be presented; a formulation based on the enhanced strain method will be introduced in the EFGM and the B‐bar method will be implemented under the scope of the EFGM. Secondly, to render this method more robust, a stabilization technique will be implemented avoiding hourglass. Several examples are solved to probe the efficiency of these techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
    
An assumed‐strain finite element technique is presented for shear‐deformable (Reissner–Mindlin) plates. The weighted residual method (reminiscent of the strain–displacement functional) is used to enforce weakly the balance equation with the natural boundary condition and, separately, the kinematic equation (the strain–displacement relationship). The a priori satisfaction of the kinematic weighted residual serves as a condition from which strain–displacement operators are derived via nodal integration, for linear triangles, and quadrilaterals, and also for quadratic triangles. The degrees of freedom are only the primitive variables: transverse displacements and rotations at the nodes. A straightforward constraint count can partially explain the insensitivity of the resulting finite element models to locking in the thin‐plate limit. We also construct an energy‐based argument for the ability of the present formulation to converge to the correct deflections in the limit of the thickness approaching zero. Examples are used to illustrate the performance with particular attention to the sensitivity to element shape and shear locking. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
    
In the conventional displacement‐based finite element analysis of composite beam–columns that consist of two Euler–Bernoulli beams juxtaposed with a deformable shear connection, the coupling of the transverse and longitudinal displacement fields may cause oscillations in slip field and reduction in optimal convergence rate, known as slip locking. This locking phenomenon is typical of multi‐field problems of this type, and is known to produce erroneous results for the displacement‐based finite element analysis of composite beam–columns based on cubic transverse and linear longitudinal interpolation fields. This paper introduces strategies including the assumed strain method, discrete strain gap method, and kinematic interpolatory technique to alleviate the oscillations in slip and curvature, and improve the convergence performance of the displacement‐based finite element analysis of composite beam–columns. A systematic solution of the differential equations of equilibrium is also provided, and a superconvergent element is developed in this paper. Numerical results presented illustrate the accuracy of the proposed modifications. The solutions based on the superconvergent element provide benchmark results for the performance of these proposed formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
    
An alternative approach for developing practical large‐strain finite elements has been introduced and used to create a three‐dimensional solid element that exhibits no locking or hourglassing, but which is more easily and reliably derived and implemented than typical reduced‐integration schemes with hourglassing control. Typical large‐strain elements for forming applications rely on reduced integration to remove locking modes that occur with the coarse meshes that are necessary for practical use. This procedure introduces spurious zero‐energy deformation modes that lead to hourglassing, which in turn is controlled by complex implementations that involve lengthy derivations, knowledge of the material model, and/or undetermined parameters. Thus, for a new material or new computer program, implementation of such elements is a daunting task. Wang–Wagoner‐3‐dimensions (WW3D), a mixed, hexahedral, three‐dimensional solid element, was derived from the standard linear brick element by ignoring the strain components corresponding to locking modes while maintaining full integration (8 Gauss points). Thus, WW3D is easily implemented for any material law, with little chance of programming error, starting from programming for a readily available linear brick element. Surprisingly, this approach and resulting element perform similarly or better than standard solid elements in a series of numerical tests appearing in the literature. The element was also tested successfully for an applied sheet‐forming analysis problem. Many variations on the scheme are also possible for deriving special‐purpose elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Cold expansion and local torsion processes provide controllable strengthening mechanisms for a fastener hole and therefore have engineering significance. They rely on the residual stress and the accumulated shearing strain, respectively, which are difficult to measure. Due to the complex closed form solutions for these mechanisms, their numerical study is of great importance. In this work, a combination of the cold expansion and the local torsion on a fastener hole has been investigated numerically to evaluate the amount and nature of the total accumulated residual stresses around a fastener hole. Different cases of the cold expansion and the local torsion processes were modelled and studied by finite element simulation to investigate the existence of a loading case which produces a beneficial compressive residual stress field in the vicinity of a hole. Sensitivity of the final residual stress with respect to a range of process parameters including adequate diametral interference and angle of rotation was investigated.  相似文献   

13.
    
A continuum‐based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic response of non‐linear structural systems with elastic–plastic material and large deformation. The methodology is aimed for applications in non‐linear dynamic problems, such as crashworthiness design. The first‐order variations of the energy forms, load form, and kinematic and structural responses with respect to sizing design variables are derived. To obtain design sensitivities, the direct differentiation method and updated Lagrangian formulation are used since they are more appropriate for the path‐dependent problems than the adjoint variable method and the total Lagrangian formulation, respectively. The central difference method and the finite element method are used to discretize the temporal and spatial domains, respectively. The Hughes–Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and Jaumann rate‐based incrementally objective stress integration scheme are used to handle the finite strain and rotation. An elastic–plastic material model with combined isotropic/kinematic hardening rule is employed. A key development is to use the radial return algorithm along with the secant iteration method to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the finite difference results. Design optimization is carried out using the design sensitivity information. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The flow-theory version of couple stress strain gradient plasticity is adopted for investigating the asymptotic fields near a steadily propagating crack-tip, under Mode III loading conditions. By incorporating a material characteristic length, typically of the order of few microns for ductile metals, the adopted constitutive model accounts for the microstructure of the material and can capture the strong size effects arising at small scales. The effects of microstructure result in a substantial increase in the singularities of the skew-symmetric stress and couple stress fields, which occurs also for a small hardening coefficient. The symmetric stress field turns out to be non-singular according to the asymptotic solution for the stationary crack problem in linear elastic couple stress materials. The performed asymptotic analysis can provide useful predictions about the increase of the traction level ahead of the crack-tip due to the sole contribution of the rotation gradient, which has been found relevant and non-negligible at the micron scale.  相似文献   

15.
    
The present paper considers the linear static analysis of composite cylindrical structures by means of a shell finite element with variable through‐the‐thickness kinematic. The refined models used are grouped in the Unified Formulation by Carrera (CUF), and they permit to accurately describe the distribution of displacements and stresses along the thickness of the multilayered shell. The shell element has nine nodes, and the mixed interpolation of tensorial components method is employed to contrast the membrane and shear locking phenomenon. Different composite cylindrical shells are analyzed, with various laminations and thickness ratios. The governing equations are derived from the principle of virtual displacement in order to apply the finite element method. The results, obtained with different theories contained in the CUF, are compared with both the elasticity solutions given in the literature and the analytical solutions obtained using Navier's method. From the analysis, one can conclude that the shell element based on the CUF is very efficient, and its use is mandatory with respect to the classical models in the study of composite structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
    
In this paper a new eight‐node (brick) solid‐shell finite element formulation based on the concept of reduced integration with hourglass stabilization is presented. The work focuses on static problems. The starting point of the derivation is the three‐field variational functional upon which meanwhile established 3D enhanced strain concepts are based. Important additional assumptions are made to transfer the approach into a powerful solid‐shell. First of all, a Taylor expansion of the first Piola–Kirchhoff stress tensor with respect to the normal through the centre of the element is carried out. In this way the stress becomes a linear function of the shell surface co‐ordinates whereas the dependence on the thickness co‐ordinate remains non‐linear. Secondly, the Jacobian matrix is replaced by its value in the centre of the element. These two assumptions lead to a computationally efficient shell element which requires only two Gauss points in the thickness direction (and one Gauss point in the plane of the shell element). Additionally three internal element degrees‐of‐freedom have to be determined to avoid thickness locking. One important advantage of the element is the fact that a fully three‐dimensional stress state can be modelled without any modification of the constitutive law. The formulation has only displacement degrees‐of‐freedom and the geometry in the thickness direction is correctly displayed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
    
In this paper we use the numerical inf–sup test to evaluate both displacement‐based and mixed discretization schemes for the solution of Reissner–Mindlin plate problems using the meshfree method of finite spheres. While an analytical proof of whether a discretization scheme passes the inf–sup condition is most desirable, such a proof is usually out of reach due to the complexity of the meshfree approximation spaces involved. The numerical inf–sup test (Int. J. Numer. Meth. Engng 1997; 40 :3639–3663), developed to test finite element discretization spaces, has therefore been adopted in this paper. Tests have been performed for both regular and irregular nodal configurations. While, like linear finite elements, pure displacement‐based approximation spaces with linear consistency do not pass the inf–sup test and exhibit shear locking, quadratic discretizations, unlike quadratic finite elements, pass the test. Pure displacement‐based and mixed approximation spaces that pass the numerical inf–sup test exhibit optimal or near optimal convergence behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
该文利用罚函数法施加边界条件,建立了Reissner-Mindlin板壳无网格法的离散形式,通过数值锁死试验,探讨了EFG法、RPIM以及基于节点积分的无网格法在解决Reissner-Mindlin板壳闭锁问题中所存在的优缺点。所得结果表明,基于匹配近似场和节点积分方案的无网格法在处理剪切闭锁问题时具有优越性。然后以SCNI-MLS无网格法为基础,对Reissner-Mindlin板壳结构的尺寸、形状和轮廓设计进行了统一的设计灵敏度分析,结合约束变尺度序列二次规划法,完成了SCNI-MLS无网格法壳结构优化设计的算例,算例结果验证了所建立灵敏度分析的精度和优化方法的可行性。  相似文献   

19.
    
The cell‐based strain smoothing technique is combined with discrete shear gap method using three‐node triangular elements to give a so‐called cell‐based smoothed discrete shear gap method (CS‐DSG3) for static and free vibration analyses of Reissner–Mindlin plates. In the process of formulating the system stiffness matrix of the CS‐DSG3, each triangular element will be divided into three subtriangles, and in each subtriangle, the stabilized discrete shear gap method is used to compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on whole the triangular element is used to smooth the strains on these three subtriangles. The numerical examples demonstrated that the CS‐DSG3 is free of shear locking, passes the patch test, and shows four superior properties such as: (1) being a strong competitor to many existing three‐node triangular plate elements in the static analysis; (2) can give high accurate solutions for problems with skew geometries in the static analysis; (3) can give high accurate solutions in free vibration analysis; and (4) can provide accurately the values of high frequencies of plates by using only coarse meshes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
    
A refined discrete degenerated 20‐DOF quadrilateral shell element RQS20 is proposed. The exact displacement function of the Timoshenko's beam is used as the displacement on the element boundary. The re‐constitute method for shear strain matrix is adopted. The proposed element can be used for the analysis of both moderately thick and thin plates/shells, and the convergence for the very thin case can be ensured theoretically. Numerical examples presented show that the new model indeed possesses higher accuracy in the analysis of thin and thick plates/shells, and that it can pass the patch test required for the Kirchhoff thin plate elements. Most important of all, it is free from the membrane and shear locking phenomena for extremely thin plates/shells, on the one hand, and it can also avoid the phenomenon of oscillatory solutions for thick plates/shells case on the other. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号