首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a new methodology for analyzing wave propagation problems, originally presented and checked by the authors for one-dimensional problems [18], is extended to plane strain elastodynamics. It is based on a Laplace domain boundary element formulation and Duhamel integrals in combination with the convolution quadrature method (CQM) [13], [14]. The CQM is a technique which approximates convolution integrals, in this case the Duhamel integrals, by a quadrature rule whose weights are determined by Laplace transformed fundamental solutions and a multi-step method. In order to investigate the accuracy and the stability of the proposed algorithm, some plane wave propagation and interaction problems are solved and the results are compared to analytical solutions and results from finite element calculations. Very good agreement is obtained. The results are very stable with respect to time step size. In the present work only multi-region boundary element analysis is discussed, but the presented technique can easily be extended to boundary element – finite element coupling as will be shown in subsequent publications.  相似文献   

2.
This paper is concerned with an effective numerical implementation of the Trefftz boundary element method, for the analysis of two‐dimensional potential problems, defined in arbitrarily shaped domains. The domain is first discretized into multiple subdomains or regions. Each region is treated as a single domain, either finite or infinite, for which a complete set of solutions of the problem is known in the form of an expansion with unknown coefficients. Through the use of weighted residuals, this solution expansion is then forced to satisfy the boundary conditions of the actual domain of the problem, leading thus to a system of equations, from which the unknowns can be readily determined. When this basic procedure is adopted, in the analysis of multiple‐region problems, proper boundary integral equations must be used, along common region interfaces, in order to couple to each other the unknowns of the solution expansions relative to the neighbouring regions. These boundary integrals are obtained from weighted residuals of the coupling conditions which allow the implementation of any order of continuity of the potential field, across the interface boundary, between neighbouring regions. The technique used in the formulation of the region‐coupling conditions drives the performance of the Trefftz boundary element method. While both of the collocation and Galerkin techniques do not generate new unknowns in the problem, the technique of Galerkin presents an additional and unique feature: the size of the matrix of the final algebraic system of equations which is always square and symmetric, does not depend on the number of boundary elements used in the discretization of both the actual and region‐interface boundaries. This feature which is not shared by other numerical methods, allows the Galerkin technique of the Trefftz boundary element method to be effectively applied to problems with multiple regions, as a simple, economic and accurate solution technique. A very difficult example is analysed with this procedure. The accuracy and efficiency of the implementations described herein make the Trefftz boundary element method ideal for the study of potential problems in general arbitrarily‐shaped two‐dimensional domains. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
A new algorithm is developed to evaluate the time convolution integrals that are associated with boundary element methods (BEM) for transient diffusion. This approach, which is based upon the multi‐level multi‐integration concepts of Brandt and Lubrecht, provides a fast, accurate and memory efficient time domain method for this entire class of problems. Conventional BEM approaches result in operation counts of order O(N2) for the discrete time convolution over N time steps. Here we focus on the formulation for linear problems of transient heat diffusion and demonstrate reduced computational complexity to order O(N3/2) for three two‐dimensional model problems using the multi‐level convolution BEM. Memory requirements are also significantly reduced, while maintaining the same level of accuracy as the conventional time domain BEM approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper the shear deformable shallow shells are analysed by boundary element method. New boundary integral equations are derived utilizing the Betti's reciprocity principle and coupling boundary element formulation of shear deformable plate and two‐dimensional plane stress elasticity. Two techniques, direct integral method (DIM) and dual reciprocity method (DRM), are developed to transform domain integrals to boundary integrals. The force term is approximted by a set of radial basis functions. Several examples are presented to demonstrate the accuracy of the two methods. The accuracy of results obtained by using boundary element method are compared with exact solutions and the finite element method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The numerical modelling of interacting acoustic media by boundary element method–finite element method (BEM–FEM) coupling procedures is discussed here, taking into account time‐domain approaches. In this study, the global model is divided into different sub‐domains and each sub‐domain is analysed independently (considering BEM or FEM discretizations): the interaction between the different sub‐domains of the global model is accomplished by interface procedures. Numerical formulations based on FEM explicit and implicit time‐marching schemes are discussed, resulting in direct and optimized iterative BEM–FEM coupling techniques. A multi‐level time‐step algorithm is considered in order to improve the flexibility, accuracy and stability (especially when conditionally stable time‐marching procedures are employed) of the coupled analysis. At the end of the paper, numerical examples are presented, illustrating the potentialities and robustness of the proposed methodologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
To simulate the transient scalar wave propagation in a two‐dimensional unbounded waveguide, an explicit finite element artificial boundary scheme is proposed, which couples the standard dynamic finite element method for complex near field and a high‐order accurate artificial boundary condition (ABC) for simple far field. An exact dynamic‐stiffness ABC that is global in space and time is constructed. A temporal localization method is developed, which consists of the rational function approximation in the frequency domain and the auxiliary variable realization into time domain. This method is applied to the dynamic‐stiffness ABC to result in a high‐order accurate ABC that is local in time but global in space. By discretizing the high‐order accurate ABC along artificial boundary and coupling the result with the standard lumped‐mass finite element equation of near field, a coupled dynamic equation is obtained, which is a symmetric system of purely second‐order ordinary differential equations in time with the diagonal mass and non‐diagonal damping matrices. A new explicit time integration algorithm in structural dynamics is used to solve this equation. Numerical examples are given to demonstrate the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The scaled boundary finite‐element method is extended to the modelling of thermal stresses. The particular solution for the non‐homogeneous term caused by thermal loading is expressed as integrals in the radial direction, which are evaluated analytically for temperature changes varying as power functions of the radial coordinate. When applied to model a multi‐material corner, only the boundary of the problem domain is discretized. The boundary conditions on the straight material interfaces and the side‐faces forming the corner are satisfied analytically without discretization. The stress field is expressed semi‐analytically as a series solution. The stress distribution along the radial direction, including both the real and complex power singularity and the power‐logarithmic singularity, is represented analytically. The stress intensity factors are determined directly from their definitions in stresses. No knowledge on asymptotic expansions is required. Numerical examples are calculated to evaluate the accuracy of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
It is well known that the lower bound to exact solutions in linear fracture problems can be easily obtained by the displacement compatible finite element method (FEM) together with the singular crack tip elements. It is, however, much more difficult to obtain the upper bound solutions for these problems. This paper aims to formulate a novel singular node‐based smoothed finite element method (NS‐FEM) to obtain the upper bound solutions for fracture problems. In the present singular NS‐FEM, the calculation of the system stiffness matrix is performed using the strain smoothing technique over the smoothing domains (SDs) associated with nodes, which leads to the line integrations using only the shape function values along the boundaries of the SDs. A five‐node singular crack tip element is used within the framework of NS‐FEM to construct singular shape functions via direct point interpolation with proper order of fractional basis. The mix‐mode stress intensity factors are evaluated using the domain forms of the interaction integrals. The upper bound solutions of the present singular NS‐FEM are demonstrated via benchmark examples for a wide range of material combinations and boundary conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Multi‐scale problems are often solved by decomposing the problem domain into multiple subdomains, solving them independently using different levels of spatial and temporal refinement, and coupling the subdomain solutions back to obtain the global solution. Most commonly, finite elements are used for spatial discretization, and finite difference time stepping is used for time integration. Given a finite element mesh for the global problem domain, the number of possible decompositions into subdomains and the possible choices for associated time steps is exponentially large, and the computational costs associated with different decompositions can vary by orders of magnitude. The problem of finding an optimal decomposition and the associated time discretization that minimizes computational costs while maintaining accuracy is nontrivial. Existing mesh partitioning tools, such as METIS, overlook the constraints posed by multi‐scale methods and lead to suboptimal partitions with a high performance penalty. We present a multi‐level mesh partitioning approach that exploits domain‐specific knowledge of multi‐scale methods to produce nearly optimal mesh partitions and associated time steps automatically. Results show that for multi‐scale problems, our approach produces decompositions that outperform those produced by state‐of‐the‐art partitioners like METIS and even those that are manually constructed by domain experts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a time domain method for soil–structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating analytical frequency‐dependent infinite elements for the far‐field soil region. Equivalent earthquake input forces are calculated based on the free‐field responses along the interface between the near‐ and far‐field soil regions using the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far‐field soil region formulated using the analytical frequency‐dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil–structure system in the time domain. Earthquake response analyses have been carried out on a multi‐layered half‐space and a tunnel embedded in a layered half‐space, and results are compared with those obtained by the conventional method in the frequency domain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
When the different parts of a structure are modelled independently by BEM or FEM methods, it is sometimes necessary to put the parts together without remeshing of the nodes along the part interfaces. Frequently the nodes do not match along the interface. In this work, the symmetric Galerkin multi‐zone curved boundary element is a fully symmetric formulation and is the method used for the boundary element part. For BEM–FEM coupling it is then necessary to interpolate the tractions in‐between the non‐matching nodes for the FEM part. Finally, the coupling is achieved by transforming the finite element domains to equivalent boundary element domains in a block symmetric formulation. This system is then coupled with a boundary element domain with non‐matching nodes in‐between. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper develops a finite element scheme to generate the spatial‐ and time‐dependent absorbing boundary conditions for unbounded elastic‐wave problems. This scheme first calculates the spatial‐ and time‐dependent wave speed over the cosine of the direction angle using the Higdon's one‐way first‐order boundary operator, and then this operator is used again along the absorbing boundary in order to simulate the behaviour of unbounded problems. Different from other methods, the estimation of the wave speed and directions is not necessary in this method, since the wave speed over the cosine of the direction angle is calculated automatically. Two‐ and three‐dimensional numerical simulations indicate that the accuracy of this scheme is acceptable if the finite element analysis is appropriately arranged. Moreover, only the displacements along absorbing boundary nodes need to be set in this method, so the standard finite element method can still be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a new method for analysing one-dimensional wave propagation in a layered medium is presented. It is based on Duhamel integrals in combination with the convolution quadrature method (CQM) [9, 10]. The CQM is a technique which approximates convolution integrals, in this case the Duhamel integrals, by a quadrature rule whose weights are determined by Laplace transformed fundamental solutions and a multi-step method. Duhamel integrals are used to ensure equilibrium between the layers. The methodology is closely related to structural engineering and should be more familiar to engineers in practice than the usual boundary element method. In order to investigate the accuracy and the stability of the proposed algorithm, two benchmark problems are studied. The method is presented for one-dimensional problems, namely rods, but it can be readily extended to two- or three-dimensional dynamic interaction problems, e.g., dynamic soil-structure interaction. The results are very stable with respect to time step size and they are in very good agreement with analytical solutions.  相似文献   

14.
The two‐dimensional transient elastodynamic problems are solved numerically by using the coupling of the dual reciprocity boundary element method (DRBEM) in spatial domain with the differential quadrature method (DQM) in time domain. The DRBEM with the fundamental solution of the Laplace equation transforms the domain integrals into the boundary integrals that contain the first‐ and the second‐order time derivative terms. Thus, the application of DRBEM to elastodynamic problems results in a system of second‐order ordinary differential equations in time. This system is then discretized by the polynomial‐based DQM with respect to time, which gives a system of linear algebraic equations after the imposition of both the boundary and the initial conditions. Therefore, the solution is obtained at any required time level at one stroke without the use of an iterative scheme and without the need of very small step size in time direction. The numerical results are visualized in terms of graphics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A new finite element scheme is proposed for the numerical solution of time‐harmonic wave scattering problems in unbounded domains. The infinite domain in truncated via an artificial boundary ?? which encloses a finite computational domain Ω. On ?? a local high‐order non‐reflecting boundary condition (NRBC) is applied which is constructed to be optimal in a certain sense. This NRBC is implemented in a special way, by using auxiliary variables along the boundary ??, so that it involves no high‐order derivatives regardless of its order. The order of the scheme is simply an input parameter, and it may be arbitrarily high. This leads to a symmetric finite element formulation where standard C0 finite elements are used in Ω. The performance of the method is demonstrated via numerical examples, and it is compared to other NRBC‐based schemes. The method is shown to be highly accurate and stable, and to lead to a well‐conditioned matrix problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A super‐element for the dynamic analysis of two‐dimensional crack problems is developed based on the scaled boundary finite‐element method. The boundary of the super‐element containing a crack tip is discretized with line elements. The governing partial differential equations formulated in the scaled boundary co‐ordinates are transformed to ordinary differential equations in the frequency domain by applying the Galerkin's weighted residual technique. The displacements in the radial direction from the crack tip to a point on the boundary are solved analytically without any a priori assumption. The scaled boundary finite‐element formulation leads to symmetric static stiffness and mass matrices. The super‐element can be coupled seamlessly with standard finite elements. The transient response is evaluated directly in the time domain using a standard time‐integration scheme. The stress field, including the singularity around the crack tip, is expressed semi‐analytically. The stress intensity factors are evaluated without directly addressing singular functions, as the limit in their definitions is performed analytically. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A hypersingular time‐domain boundary element method (BEM) for transient elastodynamic crack analysis in two‐dimensional (2D), homogeneous, anisotropic, and linear elastic solids is presented in this paper. Stationary cracks in both infinite and finite anisotropic solids under impact loading are investigated. On the external boundary of the cracked solid the classical displacement boundary integral equations (BIEs) are used, while the hypersingular traction BIEs are applied to the crack‐faces. The temporal discretization is performed by a collocation method, while a Galerkin method is implemented for the spatial discretization. Both temporal and spatial integrations are carried out analytically. Special analytical techniques are developed to directly compute strongly singular and hypersingular integrals. Only the line integrals over an unit circle arising in the elastodynamic fundamental solutions need to be computed numerically by standard Gaussian quadrature. An explicit time‐stepping scheme is obtained to compute the unknown boundary data including the crack‐opening‐displacements (CODs). Special crack‐tip elements are adopted to ensure a direct and an accurate computation of the elastodynamic stress intensity factors from the CODs. Several numerical examples are given to show the accuracy and the efficiency of the present hypersingular time‐domain BEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Recently developed non‐reflecting boundary conditions are applied for exterior time‐dependent wave problems in unbounded domains. The linear time‐dependent wave equation, with or without a dispersive term, is considered in an infinite domain. The infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC) is imposed on ??. Then the problem is solved numerically in the finite domain bounded by ??. The new boundary scheme is based on a reformulation of the sequence of NRBCs proposed by Higdon. We consider here two reformulations: one that involves high‐order derivatives with a special discretization scheme, and another that does not involve any high derivatives beyond second order. The latter formulation is made possible by introducing special auxiliary variables on ??. In both formulations the new NRBCs can easily be used up to any desired order. They can be incorporated in a finite element or a finite difference scheme; in the present paper the latter is used. In contrast to previous papers using similar formulations, here the method is applied to a fully exterior two‐dimensional problem, with a rectangular boundary. Numerical examples in infinite domains are used to demonstrate the performance and advantages of the new method. In the auxiliary‐variable formulation long‐time corner instability is observed, that requires special treatment of the corners (not addressed in this paper). No such difficulties arise in the high‐derivative formulation. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

20.
The scaled boundary finite element method is a novel semi‐analytical technique, whose versatility, accuracy and efficiency are not only equal to, but potentially better than the finite element method and the boundary element method for certain problems. This paper investigates the possibility of using higher‐order polynomial functions for the shape functions. Two techniques for generating the higher‐order shape functions are investigated. In the first, the spectral element approach is used with Lagrange interpolation functions. In the second, hierarchical polynomial shape functions are employed to add new degrees of freedom into the domain without changing the existing ones, as in the p‐version of the finite element method. To check the accuracy of the proposed procedures, a plane strain problem for which an exact solution is available is employed. A more complex example involving three scaled boundary subdomains is also addressed. The rates of convergence of these examples under p‐refinement are compared with the corresponding rates of convergence achieved when uniform h‐refinement is used, allowing direct comparison of the computational cost of the two approaches. The results show that it is advantageous to use higher‐order elements, and that higher rates of convergence can be obtained using p‐refinement instead of h‐refinement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号