首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We develop finite element data structures for T‐splines based on Bézier extraction generalizing our previous work for NURBS. As in traditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial basis functions, the so‐called Bernstein basis. The Bézier elements may be processed in the same way as in a standard finite element computer program, utilizing exactly the same data processing arrays. In fact, only the shape function subroutine needs to be modified while all other aspects of a finite element program remain the same. A byproduct of the extraction process is the element extraction operator. This operator localizes the topological and global smoothness information to the element level, and represents a canonical treatment of T‐junctions, referred to as ‘hanging nodes’ in finite element analysis and a fundamental feature of T‐splines. A detailed example is presented to illustrate the ideas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The equations that govern Kirchhoff–Love plate theory are solved using quadratic Powell–Sabin B‐splines and unstructured standard T‐splines. Bézier extraction is exploited to make the formulation computationally efficient. Because quadratic Powell–Sabin B‐splines result in ‐continuous shape functions, they are of sufficiently high continuity to capture Kirchhoff–Love plate theory when cast in a weak form. Unlike non‐uniform rational B‐splines (NURBS), which are commonly used in isogeometric analysis, Powell–Sabin B‐splines do not necessarily capture the geometry exactly. However, the fact that they are defined on triangles instead of on quadrilaterals increases their flexibility in meshing and can make them competitive with respect to NURBS, as no bending strip method for joined NURBS patches is needed. This paper further illustrates how unstructured T‐splines can be modified such that they are ‐continuous around extraordinary points, and that the blending functions fulfil the partition of unity property. The performance of quadratic NURBS, unstructured T‐splines, Powell–Sabin B‐splines and NURBS‐to‐NURPS (non‐uniform rational Powell–Sabin B‐splines, which are obtained by a transformation from a NURBS patch) is compared in a study of a circular plate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
We present a hybrid variational‐collocation, immersed, and fully‐implicit formulation for fluid‐structure interaction (FSI) using unstructured T‐splines. In our immersed methodology, we define an Eulerian mesh on the whole computational domain and a Lagrangian mesh on the solid domain, which moves arbitrarily on top of the Eulerian mesh. Mathematically, the problem reduces to solving three equations, namely, the linear momentum balance, mass conservation, and a condition of kinematic compatibility between the Lagrangian displacement and the Eulerian velocity. We use a weighted residual approach for the linear momentum and mass conservation equations, but we discretize directly the strong form of the kinematic relation, deriving a hybrid variational‐collocation method. We use T‐splines for both the spatial discretization and the information transfer between the Eulerian mesh and the Lagrangian mesh. T‐splines offer us two main advantages against non‐uniform rational B‐splines: they can be locally refined and they are unstructured. The generalized‐α method is used for the time discretization. We validate our formulation with a common FSI benchmark problem achieving excellent agreement with the theoretical solution. An example involving a partially immersed solid is also solved. The numerical examples show how the use of T‐junctions and extraordinary nodes results in an accurate, efficient, and flexible method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The node‐based or edge‐based smoothed finite element method is extended to develop polyhedral elements that are allowed to have an arbitrary number of nodes or faces, and so retain a good geometric adaptability. The strain smoothing technique and implicit shape functions based on the linear point interpolation make the element formulation simple and straightforward. The resulting polyhedral elements are free from the excessive zero‐energy modes and yield a robust solution very much insensitive to mesh distortion. Several numerical examples within the framework of linear elasticity demonstrate the accuracy and convergence behavior. The smoothed finite element method‐based polyhedral elements in general yield solutions of better accuracy and faster convergence rate than those of the conventional finite element methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A novel enrichment function, which can model arbitrarily shaped inclusions within the framework of the extended finite element method, is proposed. The internal boundary of an arbitrary‐shaped inclusion is first discretized, and a numerical enrichment function is constructed ‘on the fly’ using spline interpolation. We consider a piecewise cubic spline which is constructed from seven localized discrete boundary points. The enrichment function is then determined by solving numerically a nonlinear equation which determines the distance from any point to the spline curve. Parametric convergence studies are carried out to show the accuracy of this approach compared with pointwise and linear segmentation of points for the construction of the enrichment function in the case of simple inclusions and arbitrarily shaped inclusions in linear elasticity. Moreover, the viability of this approach is illustrated on a neo‐Hookean hyperelastic material with a hole undergoing large deformation. In this case, the enrichment is able to adapt to the deformation and effectively capture the correct response without remeshing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
An over‐deterministic method has been employed for calculating the stress intensity factors (SIFs) as well as the coefficients of the higher‐order terms in the Williams series expansions in cracked bodies, using the conventional finite element analysis. For a large number of nodes around the crack tip, an over‐determined set of simultaneous linear equations is obtained, and using the fundamental concepts of the least‐squares method, the coefficients of the Williams expansion can be calculated for pure mode I, pure mode II and mixed mode I/II conditions. A convergence study has been conducted to examine the effects of the number of nodes used, the number of terms in Williams expansion and the distance of the selected nodes from the crack tip, on the accuracy of the results. It is shown that the simple method presented in this paper, yields accurate results even for coarse finite element meshes or in the absence of singular elements. The accuracy of SIFs and the coefficients of higher‐order terms are validated by using the available results in the literature.  相似文献   

9.
The wavelet‐based methods are powerful to analyse the field problems with changes in gradients and singularities due to the excellent multi‐resolution properties of wavelet functions. Wavelet‐based finite elements are often constructed in the wavelet space where field displacements are expressed as a product of wavelet functions and wavelet coefficients. When a complex structural problem is analysed, the interface between different elements and boundary conditions cannot be easily treated as in the case of conventional finite‐element methods (FEMs). A new wavelet‐based FEM in structural mechanics is proposed in the paper by using the spline wavelets, in which the formulation is developed in a similar way of conventional displacement‐based FEM. The spline wavelet functions are used as the element displacement interpolation functions and the shape functions are expressed by wavelets. The detailed formulations of typical spline wavelet elements such as plane beam element, in‐plane triangular element, in‐plane rectangular element, tetrahedral solid element, and hexahedral solid element are derived. The numerical examples have illustrated that the proposed spline wavelet finite‐element formulation achieves a high numerical accuracy and fast convergence rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In this paper aspects of the nonuniform transformation field analysis (NTFA) introduced by Michel and Suquet (Int. J. Solids Struct. 2003; 40 :6937–6955) are investigated for materials with three‐dimensional microtopology. A novel implementation of the NTFA into the finite element method (FEM) is described in detail, whereas the NTFA was originally used in combination with the fast Fourier transformation (FFT). In particular, the discrete equivalents of the averaging operators required for the preprocessing steps and an algorithm for the implicit time integration and linearization of the constitutive equations of the homogenized material are provided. To the authors knowledge this is the first implementation of the method for three‐dimensional problems. Further, an alternative mode identification strategy is proposed with the aim of small computational cost in combination with good efficiency. The new identification strategy is applied to three‐dimensional metal matrix composites in order to investigate its effective non‐linear behaviour. The homogenized material model is implemented into ABAQUS/STANDARD. Numerical examples at integration point level and in terms of structural problems highlight the efficiency of the method for three‐dimensional problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a coupling technique is developed for the combination of the wavelet‐Galerkin method (WGM) with the finite element method (FEM). In this coupled method, the WGM and FEM are respectively used in different sub‐domains. The WGM sub‐domain and the FEM sub‐domain are connected by a transition region that is described by B‐spline basis functions. The basis functions of WGM and FEM are modified in the transition region to ensure the basic polynomial reconstruction condition and the compatibility of displacements and their gradients. In addition, the elements of FEM and WGM are not necessary to conform to the transition region. This newly developed coupled method is applied to the stress analysis of 2D and 3D elasticity problems in order to investigate its performance and study parameters. Numerical results show that the present coupled method is accurate and stable. The new method has a promising potential for practical applications and can be easily extended for coupling of other numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A new smoothed finite element method (S‐FEM) with tetrahedral elements for finite strain analysis of nearly incompressible solids is proposed. The proposed method is basically a combination of the F‐bar method and edge‐based S‐FEM with tetrahedral elements (ES‐FEM‐T4) and is named ‘F‐barES‐FEM‐T4’. F‐barES‐FEM‐T4 inherits the accuracy and shear locking‐free property of ES‐FEM‐T4. At the same time, it also inherits the volumetric locking‐free property of the F‐bar method. The isovolumetric part of the deformation gradient ( F iso) is derived from the F of ES‐FEM‐T4, whereas the volumetric part ( F vol) is derived from the cyclic smoothing of J(=det( F )) between elements and nodes. Some demonstration analyses confirm that F‐barES‐FEM‐T4 with a sufficient number of cyclic smoothings suppresses the pressure oscillation in nearly incompressible materials successfully with no increase in DOF. Moreover, they reveal that our method is capable of relaxing the corner locking issue arising at the corner in the cylinder barreling analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This article presents two new methods for adaptive refinement of a B‐spline finite element solution within an integrated mechanically based computer aided engineering system. The proposed techniques for adaptively refining a B‐spline finite element solution are a local variant of np‐refinement and a local variant of h‐refinement. The key component in the np‐refinement is the linear co‐ordinate transformation introduced into the refined element. The transformation is constructed in such a way that the transformed nodal configuration of the refined element is identical to the nodal configuration of the neighbour elements. Therefore, the assembly proceeds as with classic finite elements, while the solution approximation conforms exactly along the inter‐element boundaries. For the h‐refinement, this transformation is introduced into a construction that merges the super element from the finite element world with the hierarchical B‐spline representation from the computational geometry. In the scope of developing sculptured surfaces, the proposed approach supports C0 as well as the Hermite B‐spline C1 continuous shapes. For sculptured solids, C0 continuity only is considered in this article. The feasibility of the proposed methods in the scope of the geometric design is demonstrated by several examples of creating sculptured surfaces and volumetric solids. Numerical performance of the methods is demonstrated for a test case of the two‐dimensional Poisson equation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an approach to blend the Hybrid‐Trefftz Finite Element Method (HTFEM) and the Isogeometric Analysis (IGA) called the Isogeometric Trefftz (IGAT) method is presented. The structure of the isogeometric extension of the Trefftz method is formally the same as for its conventional counterpart, except the approximation of the boundary displacements and geometry that are carried out using the Non‐Uniform Rational B‐Splines (NURBS) instead of polynomials. In other words, only the element boundaries are approximated using NURBS basis while the Trefftz approximation is used in the interior of the elements. For that reason, IGAT can be ranked alongside recently developed Isogeometric Boundary Element Method (IGABEM), the NURBS‐Enhanced Finite Element Method (NEFEM), the Isogeometric Local Maximum Entropy (IGA‐LME) method, and the Isogeometrically enhanced Scaled‐Boundary element method (SBFEM), which all use NURBS approximation at the domain boundary only. Theoretical conjectures made in this paper are accompanied by three examples that show that IGAT leads to excellent results using only a few elements.  相似文献   

17.
A new equivalent domain integral of the interaction integral is derived for the computation of the T‐stress in nonhomogeneous materials with continuous or discontinuous properties. It can be found that the derived expression does not involve any derivatives of material properties. Moreover, the formulation can be proved valid even when the integral domain contains material interfaces. Therefore, the present method can be used to extract the T‐stress of nonhomogeneous materials with complex interfaces effectively. The interaction integral method in conjunction with the extended FEM is used to solve several representative examples to show its validity. Finally, using this method, the influences of material properties on the T‐stress are investigated. Numerical results show that the mechanical properties and their first‐order derivatives affect the T‐stress greatly, while the higher‐order derivatives affect the T‐stress slightly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The paper deals with two essential and related closely processes involved in the finite element slope stability analysis in two‐dimensional problems, i.e. computation of the factors of safety (FOS) and location of the critical slide surfaces. A so‐called ?v inequality, sin ??1 – 2v is proved for any elasto‐plastic material satisfying Mohr–Coulomb's yield criterion. In order to obtain an FOS of high precision with less calculation and a proper distribution of plastic zones in the critical equilibrium state, it is stated that the Poisson's ratio v should be adjusted according to the principle that the ?v inequality always holds as reducing the strength parameters c and ?. While locating the critical slide surface represented by the critical slide line (CSL) under the plane strain condition, an initial value problem of a system of ordinary differential equations defining the CSL is formulated. A robust numerical solution for the initial value problem based on the predictor–corrector method is given in conjunction with the necessary and sufficient condition ensuring the convergence of solution. A simple example, the kinematic solution of which is available, and a challenging example from a hydraulic project in construction are analysed to demonstrate the effectiveness of the proposed procedures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
During the orbital day–night crossing period, the suddenly applied thermal loading is apt to introducing vibration on flexible appendages of large‐scale space structures. This kind of thermally‐induced vibration is a typical failure of modern spacecrafts. However, owing to the complexity of this problem, many earlier researches study only the vibration of simplified beam models, which can hardly describe the performance of practical structures. This paper aims at using the finite element method to analyse the non‐linear vibration of practical thin‐walled large‐scale space structures subjected to suddenly applied thermal loading. In this study, the coupling effect between structural deformations and the incident normal solar heat flux is considered; the necessary condition of thermally‐induced vibration is verified; and the criterion of thermal flutter is established. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
An isogeometric solid‐like shell formulation is proposed in which B‐spline basis functions are used to construct the mid‐surface of the shell. In combination with a linear Lagrange shape function in the thickness direction, this yields a complete three‐dimensional representation of the shell. The proposed shell element is implemented in a standard finite element code using Bézier extraction. The formulation is verified using different benchmark tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号