首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single‐feed T‐type fractal boundary microstrip antenna is presented. It is established that a very good circular polarization is realizable with 3‐dB axial ratio bandwidth of 1.27% at the center frequency of 2446 MHz by changing the electrical length in two directions of the square patch by using T‐type fractal curve as boundary. Further it is shown that the surface area occupied by the antenna is reduced compared to the Euclidean shaped patch antenna without much degradation in gain of the antenna. Experimental results are compared with simulated results and a very good agreement is obtained. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

2.
An asymmetric‐metasurface based wideband circularly polarized (CP) microstrip antenna using a coaxial probe is proposed for L‐band applications. The antenna involves a stacked asymmetric‐metasurface, a radiating rectangular‐patch and a coaxial feed. An asymmetric‐metasurface is designed using rectangular unit cells and smaller size unit cells along one of the diagonal lines. The asymmetric‐metasurface is placed above a radiating rectangular‐patch with support of foam layer to achieve a wideband CP radiation. The measured performance of the prototype antenna achieves an impedance bandwidth (?10 dB return loss bandwidth) of 15.7% (1.58‐1.85 GHz) with CP bandwidth (3‐dB axial ratio) of 13% (1.58‐1.80 GHz) and gain of ≥9 dBic.  相似文献   

3.
This article presents two designs of circularly polarized antenna with simple circular‐shaped radiator and circular slotted ground plane. An arc‐shaped microstrip line coupling feed mechanism is used to excite the circular radiating patch. The 3‐dB axial ratio bandwidth of the proposed antenna‐1 and proposed antenna‐2 are 3.33% and 18%, respectively. The proposed design has several advantages such as easy matching, fabrication simplicity, compact size, and wide axial ratio bandwidth. Both the antennas have been designed on FR‐4 substrate with dielectric constant 4.4 and thickness 1.59 mm. Simulated and measured results are presented to validate the working of the proposed antennas.  相似文献   

4.
提出了一种应用于S波段小型宽带圆极化微带贴片天线阵列。单点背馈式方形贴片印刷于Duroid5880介质板上,在贴片上加载两个相邻矩形缝隙,一方面实现圆极化辐射,另一方面拓展天线单元的阻抗带宽。利用该单元组阵,通过采用连续相位旋转法馈电天线单元拓展天线阵列的轴比带宽,仿真结果表明,线阵和面阵的阻抗和轴比带宽均达到10%以上。  相似文献   

5.
A wide-band circularly polarized reconfigurable antenna based on a pure water dielectric patch antenna is proposed. By changing the shape of pure water in the plexiglass container symmetrically, the circularly polarized states of the antenna can be switched. And the available bandwidth of right-hand circular polarization and left-hand circular polarization remain unchanged. The interface between pure water and air with a great difference in relative dielectric constant is equivalent to an electrical wall. When feed with an L-shaped metallic probe, the axial ratio of a wide band can be formed, and the impedance bandwidth of antenna can be fully utilized. Under the two circularly polarized states of the antenna, the measured results show that the 3-dB axial ratio bandwidth is above 24.4% for |S11| < ? 10 dB, the radiation efficiency is concentrated at 58%–71%, and the maximum gain reaches 3.5 dBi.  相似文献   

6.
A broadband circularly polarized patch antenna with suspended structure is proposed. The suspended patch has a bow‐tie structure and a gap‐coupled feed. By connecting a resistor load to another gap‐coupled feed port at the opposite position, a wide impedance and axial ratio (AR) bandwidths are obtained. The proposed design has a very simple antenna structure with an impedance bandwidth of 44.5% and a 3‐dB AR bandwidth of 33.8%, respectively. The results show that the bandwidth of the patch antenna is successfully broadened using the suspended configuration, gap‐coupled feed, and resistor loading. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:587–593, 2014.  相似文献   

7.
In this article, a new broadband circularly polarized (CP) microstrip patch antenna (MPA) with a sequential phase (SP) square‐loop feeding structure is proposed. The presented antenna is composed of a square‐loop feeding structure, four L‐shaped parasitic patches with L‐shaped slots, four parasitic square patches, and a corner‐truncated square patch. At first, a SP square‐loop is designed as a feeding structure. Then, four L‐shaped parasitic patches with L‐shaped slots are utilized to generate one CP mode by a capacitive coupled way. At last, four parasitic square patches and a corner‐truncated square patch are together placed above the SP feeding structure to broaden the circularly polarized bandwidth (CPBW). The presented antenna has a wide 3‐dB axial ratio bandwidth (ARBW) of 16.7% (5.4 GHz, 4.95‐5.85 GHz), and a wide 10‐dB return loss bandwidth of 25.5% (5.5 GHz, 4.8‐6.2 GHz). The proposed antenna features compact structure and broad 3‐AR bandwidth which could completely cover the WLAN (5.725‐5.85GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

8.
A novel broadband circularly polarized monopole antenna consisting of an isosceles trapezoidal monopole antenna which is offset fed by a microstrip line is presented. By choosing an appropriate offset, it is possible to establish two orthogonal current components that are out of phase by 90° and thus producing circular polarization. The axial ratio bandwidth of the proposed antenna has been further increased by adding a vertical slot parallel to the microstrip feed line. The measured results show that the proposed antenna has a 34.57% (1.89 GHz to 2.68 GHz) 3 dB axial ratio bandwidth. The ?10 dB reflection coefficient bandwidth is 122.53% (1.04 GHz to 4.33 GHz). The advantages of the proposed antenna are simplicity and a broad 3 dB axial ratio bandwidth.  相似文献   

9.
In this article, a new low‐profile broadband circularly polarized antenna with a single‐layer metasurface is designed. The metasurface is composed of 4 × 4 rotated rectangle‐loops. Compared to single rotated rectangle, introducing inner‐cut rectangle slot can increase the design flexibilities by changing this slot size for wider circularly polarized operating bandwidth and reduce the size of the antenna in same frequency. The proposed antenna has the advantages of a wide 3‐dB axial ratio bandwidth from 5.4 to 6.05 GHz and an excellent 10‐dB impedance bandwidth from 5 to 6.05 GHz.  相似文献   

10.
This paper presents a single‐feed wideband circularly polarized (CP) antenna with tapered crossed slots and corner directors. According to the multi‐mode resonance concept, the antenna uses two identical cross placed Vivaldi‐like tapered slots as the wideband radiating elements, and four rectangular parasitic patch directors are connected on each corner of the ground for further enhancing the bandwidth. A simple second‐order stepped microstrip line with a via on the other side of the substrate is used to feed the antenna. Two pairs of capacitors and inductors are placed on each slot to realize a 90° phase difference for CP operation. The proposed antenna is designed, fabricated and measured. Simulation results are in good agreement with the measured results that demonstrate a 10 dB impedance bandwidth (IMBW) from 1.98 to 5.71 GHz (3.73 GHz, 97.01%) and a 3 dB axial ratio bandwidth (ARBW) from 2.13 to 3.91 GHz (1.78 GHz, 58.94%). The antenna outperforms most of the reported cross slot antennas for its wide IMBW and ARBW.  相似文献   

11.
This article reports the design and development of high power, low cross‐polarization, and high efficiency circularly polarized microstrip patch array antenna at S‐band, proposed for Indian Regional Navigation Satellite System payload. A novel feeding mechanism for truncated corner square patch based on square coaxial line for broadband impedance matching is discussed. Sequential rotation scheme for axial ratio improvement in an array is implemented. High power handling margins in critical regions of square coaxial line for multipaction breakdown is brought out. Measured 19 dB return loss bandwidth of array antenna is 15.6%. Axial ratio of 0.78 dB over global coverage is achieved in the desired frequency band of operation. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

12.
This article proposes an equilateral triangule‐shaped patch antenna for radio frequency identification (RFID) applications in the 900 MHz (902–928 MHz) ultra high frequency (UHF) band. To achieve optimal impedance matching and 10‐dB operating bandwidth at the desired band, the L‐shaped probe‐feed technique was used as the feeding structure of the proposed antenna. Furthermore, a near semicircular notch was also loaded into the patch so that good circularly polarized (CP) radiation can be generated from the proposed patch antenna. By simply shifting the position or radius of this notch, the CP frequency can be varied with ease. Here, 10‐dB impedance bandwidth and 3‐dB axial ratio bandwidth of 25 and 3% were achieved. Furthermore, stable gain variation of approximately 6 dBi was also exhibited across the RFID UHF band. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:580–586, 2014.  相似文献   

13.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

14.
In the present article, a novel single fed square dielectric resonator antenna (SDRA) is presented and two orthogonal modes ( TE 111 x and TE 111 y ) of SDRA are utilized to produce the wideband circular polarization. To generate circular polarization over a broad frequency band, a new technique known as hybrid DRA has been proposed in this article. In this technique, the feeding circuit act as a radiator and also provides feeding to the dielectric resonator which enhances the impedance and axial ratio bandwidth. A 3‐dB axial ratio bandwidth of 26.66% is achieved by the SDRA excited through a rectangular patch united with 50 Ω microstrip line. In order to further increase the axial ratio bandwidth from 26.66% to 48%, a notch is truncated from the rectangular patch. The design antenna prototype has been fabricated and experimentally tested. Experimental results illustrate that the proposed structure has broad impedance and axial ratio bandwidth of 75.86% and 43.75%, respectively, and the entire axial ratio bandwidth fully matched with the impedance bandwidth. The proposed antenna produces a right handed circularly polarized (RHCP) field. By taking the mirror image of the proposed microstrip feeding, the RHCP field is converted into left handed circularly polarized (LHCP) field. This antenna is preferred for wireless applications such as indoors communication, remote sensing, wireless sensor systems and WLAN/WiMAX applications.  相似文献   

15.
In this article, a geometrically simple, microstrip line‐fed planar monopole structure with slanting edge ground plane is designed to realize the dual‐band dual‐polarized operation. The proposed antenna consists of a rotated U‐shaped patch and an electromagnetically coupled L‐shaped parasitic radiating element. Owing to the combination of microstrip line‐fed radiating patch and a slanting‐edge rectangular ground plane on the opposite side of the substrate, the proposed dual‐band antenna can generate broad axial ratio bandwidth (ARBW) in the upper frequency band. The overall dimension of the prototype is only 32 × 32 × 1.6 mm3. The measured results validate that the proposed antenna has two operational frequency bands, 29.84% (1.54‐2.08 GHz) for linearly polarized radiation and 71.85% (3.96‐8.4 GHz) for circularly polarized radiation. Measured result shows that 3‐dB ARBW of the proposed antenna is 73.54% (3.80‐8.22 GHz) in the higher frequency band. It shows that the higher frequency band exhibits a left‐hand circularly polarized radiation in the boresight direction.  相似文献   

16.
In this article, we investigate bandwidth‐enhancement of a circularly‐polarized (CP) Fabry‐Perot antenna (FPA) using single‐layer partially reflective surface (PRS). The FPA is composed of a single‐feed truncated‐corner square patch antenna, which is covered by the PRS formed by a square aperture array. We revealed that the finite‐sized PRS produces extra resonances and CP radiations for the antenna system, which broadened the impedance matching and axial ratio (AR) bandwidths significantly. For verification, a broadband CP FPA prototype operating near 5.8 GHz was realized and tested. The fabricated antenna with overall size of 125 mm × 125 mm × 23.5 mm achieves a |S11| < ?10 dB bandwidth of 31.7% (5.23‐7.2 GHz), an AR < 3‐dB bandwidth of 13.7% (5.45‐6.25 GHz), the peak gain of 13.3 dBic, a 3‐dB gain bandwidth of 22.38% (5.0‐6.26 GHz), and a radiation efficiency of >91%.  相似文献   

17.
A broadband circularly polarized (CP) planar monopole antenna is proposed here for ultrawideband (UWB) communication. The antenna is composed of a modified annular ring patch fed by a tapered microstrip line and a rectangular semiground plane on the opposite side of the substrate. Capability of generating wide axial ratio bandwidth (ARBW) is another feature of the proposed antenna. Wide ARBW is achieved by introducing a rectangular slot and a stub in the ground plane. The CP antenna has an impressive ARBW of 5.52 GHz (81.42%, 4.02‐9.54 GHz) within the UWB frequency range (3.1‐10.6 GHz). Measured 10‐dB return loss bandwidth of the proposed antenna is 120.86% centered at 7.48 GHz (2.96‐12 GHz). The proposed antenna is well used for wireless local area network (5.2 and 5.8 GHz), Worldwide Interoperability for Microwave Access (5.5 GHz), and other wireless systems in C band as well as CP‐UWB antenna communication.  相似文献   

18.
A novel single probe‐fed circularly polarized (CP) microstrip antenna design for global positioning system application is proposed. To achieve good CP radiation at 1575 MHz, two circular slots of dissimilar sizes are embedded separately into the radiating element and the ground plane. This CP design possesses the advantages such as simple in structure, uncomplicated fine‐tuning technique, and ease in manufacturing tolerances. Parametric studies via simulation are carried out to comprehend the vital parameters that will affect the impedance matching and frequency of the CP radiation. Prototypes of the proposed antenna have been constructed and experimentally studied. The measured results show a 10‐dB bandwidth and 3‐dB axial ratio bandwidth of 2.28 and 0.89%, respectively. Furthermore, stable gain variation at around 3.6 dBic is also observed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

19.
A new broadband circularly polarized (CP) square‐slot antenna with low axial ratios is proposed in this article. The antenna is comprised of an L‐shaped microstrip line with tapered section and a square‐slot ground plane with some stubs and slots, which are utilized as perturbations for the desirable antenna performance. By loading stubs and slots in the square‐slot ground plane, the 2‐dB axial ratio bandwidth (ARBW) and 10‐dB return loss bandwidth for the presented antenna can be markedly improved. The measured results show that its 2‐dB ARBW is 4.2 GHz (54.2% from 5.65 GHz to 9.85 GHz) and its 10‐dB return loss bandwidth is about 8.9 GHz (92.7% from 5.15 GHz to 14.05 GHz). The proposed antenna features compact structure and broad 2‐AR bandwidth which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

20.
A dual mode square‐ring defected ground waveguide (SR‐DGW) with defected square patch is first proposed to excite a single‐feed dual mode circularly polarized (CP) patch antenna, which can improve the impedance bandwidth and achieve the CP radiation pattern. The defected square patch is called the perturbation element. By optimizing the size of the perturbation, the degenerate modes of the dual mode SR‐DGW are split and their orthogonal modes can be excited simultaneously. Due to the dual mode of the SR‐DGW, the TM01 mode, and TM10 mode of the square patch antenna are excited simultaneously, which can improve the impedance bandwidth of the antenna. Meanwhile, owing to the orthogonal modes, CP radiation pattern of the antenna is obtained. Then, for a better impedance matching, an L‐shaped spurline embedded in the feedline is introduced. The simulated and measured results show a good performance of the proposed antenna. The measured ?10 dB impedance bandwidth is 10.4% (3.56 GHz‐3.95 GHz). The measured 3 dB axial ratio bandwidth is 5.36% (3.63 GHz‐3.83 GHz). Detailed designs and experiments are described and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号