首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Eulerian finite element formulation for quasi‐state one way coupled thermo‐elasto‐plastic systems is presented. The formulation is suitable for modeling material processes such as welding and laser surfacing. In an Eulerian frame, the solution field of a quasi‐state process becomes steady state for the heat transfer problem and static for the stress problem. A mixed small deformation displacement elasto‐plastic formulation is proposed. The formulation accounts for temperature dependent material properties and exhibits a robust convergence. Streamline upwind Petrov–Galerkin (SUPG) is used to remove spurious oscillations. Smoothing functions are introduced to relax the non‐differentiable evolution equations and allow for the use of gradient (stiffness) solution scheme via the Newton–Raphson method. A 3‐dimensional simulation of a laser surfacing process is presented to exemplify the formulation. Results from the Eulerian formulation are in good agreement with results from the conventional Lagrangian formulation. However, the Eulerian formulation is approximately 15 times faster than the Lagrangian. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents alternative forms of hyperelastic–plastic constitutive equations and their integration algorithms for isotropic‐hardening materials at large strain, which are established in two‐point tensor field, namely between the first Piola–Kirchhoff stress tensor and deformation gradient. The eigenvalue problems for symmetric and non‐symmetric tensors are applied to kinematics of multiplicative plasticity, which imply the transformation relationships of eigenvectors in current, intermediate and initial configurations. Based on the principle of plastic maximum dissipation, the two‐point hyperelastic stress–strain relationships and the evolution equations are achieved, in which it is considered that the plastic spin vanishes for isotropic plasticity. On the computational side, the exponential algorithm is used to integrate the plastic evolution equation. The return‐mapping procedure in principal axes, with respect to logarithmic elastic strain, possesses the same structure as infinitesimal deformation theory. Then, the theory of derivatives of non‐symmetric tensor functions is applied to derive the two‐point closed‐form consistent tangent modulus, which is useful for Newton's iterative solution of boundary value problem. Finally, the numerical simulation illustrates the application of the proposed formulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This work provides a robust variational‐based numerical implementation of a phase field model of ductile fracture in elastic–plastic solids undergoing large strains. This covers a computationally efficient micromorphic regularization of the coupled gradient plasticity‐damage formulation. The phase field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modeling with geometric features rooted in fracture mechanics. It has proven immensely successful with regard to the analysis of complex crack topologies without the need for fracture‐specific computational structures such as finite element design of crack discontinuities or intricate crack‐tracking algorithms. The proposed gradient‐extended plasticity‐damage formulation includes two independent length scales that regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones or vice versa and guarantees on the computational side a mesh objectivity in post‐critical ranges. The proposed setting is rooted in a canonical variational principle. The coupling of gradient plasticity to gradient damage is realized by a constitutive work density function that includes the stored elastic energy and the dissipated work due to plasticity and fracture. The latter represents a coupled resistance to plasticity and damage, depending on the gradient‐extended internal variables that enter plastic yield functions and fracture threshold functions. With this viewpoint on the generalized internal variables at hand, the thermodynamic formulation is outlined for gradient‐extended dissipative solids with generalized internal variables that are passive in nature. It is specified for a conceptual model of von Mises‐type elasto‐plasticity at finite strains coupled with fracture. The canonical theory proposed is shown to be governed by a rate‐type minimization principle, which fully determines the coupled multi‐field evolution problem. This is exploited on the numerical side by a fully symmetric monolithic finite element implementation. An important aspect of this work is the regularization towards a micromorphic gradient plasticity‐damage setting by taking into account additional internal variable fields linked to the original ones by penalty terms. This enhances the robustness of the finite element implementation, in particular, on the side of gradient plasticity. The performance of the formulation is demonstrated by means of some representative examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A finite element method is used for computing the non‐linear sloshing response of liquid in a two‐dimensional rigid rectangular tank with rigid baffles. The potential formulation is considered for the liquid domain and a mixed Eulerian–Langrangian scheme is adopted. The solution is obtained by the Galerkin method. The fourth‐order Runge–Kutta method is employed to advance the solution in the time domain. A regridding technique is applied to the free surface of the liquid, which effectively eliminates the numerical instabilities without the use of artificial smoothing. Through the comparison with the available results for the rectangular tank without baffle, the validity of the present formulation is checked and then extended to the solution of tanks with rigid baffles. The effects of baffle parameters such as position, dimension and numbers on the non‐linear sloshing response are examined. The present numerical solution procedure is also applied to the non‐linear sloshing problems in a circular cylindrical container with annular baffle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a three‐invariant cap plasticity model with an isotropic hardening rule is presented for numerical simulation of powder compaction processes. A general form is developed for single‐cap plasticity which can be compared with some common double‐surface plasticity models proposed for powders in literature. The constitutive elasto‐plastic matrix and its components are derived based on the definition of yield surface, hardening parameter and non‐linear elastic behaviour, as function of relative density of powder. Different aspects of the new single plasticity are illustrated by generating the classical plasticity models as special cases of the proposed model. The procedure for determination of powder parameters is described by fitting the model to reproduce data from triaxial compression and confining pressure experiments. The three‐invariant cap plasticity is performed within the framework of an arbitrary Lagrangian–Eulerian formulation, in order to predict the non‐uniform relative density distribution during large deformation of powder die pressing. In ALE formulation, the reference configuration is used for describing the motion, instead of material configuration in Lagrangian, and spatial configuration in Eulerian formulation. This formulation introduces some convective terms in the finite element equations and consists of two phases. Each time step is analysed according to Lagrangian phase until required convergence is attained. Then, the Eulerian phase is applied to keep mesh configuration regular. Because of relative displacement between mesh and material, all dependent variables such as stress and strain are converted through the Eulerian phase. Finally, the numerical schemes are examined for efficiency and accuracy in the modelling of a rotational flanged component, an automotive component, a conical shaped‐charge liner and a connecting‐rod. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The ‘variable‐element‐topology finite element method’ (VETFEM) is a finite‐element‐like Galerkin approximation method in which the elements may take arbitrary polyhedral form. A complete development of the VETFEM is given here for both two and three dimensions. A kinematic enhancement of the displacement‐based formulation is also given, which effectively treats the case of near‐incompressibility. Convergence of the method is discussed and then illustrated by way of a 2D problem in elastostatics. Also, the VETFEM's performance is compared to that of the conventional FEM with eight‐node hex elements in a 3D finite‐deformation elastic–plastic problem. The main attraction of the new method is its freedom from the strict rules of construction of conventional finite element meshes, making automatic mesh generation on complex domains a significantly simpler matter. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
We propose to improve the efficiency of the computation of the reduced‐state variables related to a given reduced basis. This basis is supposed to be built by using the snapshot proper orthogonal decomposition (POD) model reduction method. In the framework of non‐linear mechanical problems involving internal variables, the local integration of the constitutive laws can dramatically limit the computational savings provided by the reduction of the order of the model. This drawback is due to the fact that, using a Galerkin formulation, the size of the reduced basis has no effect on the complexity of the constitutive equations. In this paper we show how a reduced‐basis approximation and a Petrov–Galerkin formulation enable to reduce the computational effort related to the internal variables. The key concept is a reduced integration domain where the integration of the constitutive equations is performed. The local computations being not made over the entire domain, we extrapolate the computed internal variable over the full domain using POD vectors related to the internal variables. This paper shows the improvement of the computational saving obtained by the hyper‐reduction of the elasto‐plastic model of a simple structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A coupled finite element model is developed to analyse the thermo‐mechanical behaviour of a widely used polymer composite panel subject to high temperatures at service conditions. Thermo‐chemical and thermo‐mechanical models of previous researchers have been extended to study the thermo‐chemical decomposition, internal heat and mass transfer, deformation and the stress state of the material. The phenomena of heat and mass transfer and thermo‐mechanical deformation are simulated using three sets of governing equations, i.e. energy, gas mass diffusion and deformation equations. These equations are then assembled into a coupled matrix equation using the Bubnov–Galerkin finite element formulation and then solved simultaneously at each time interval. An experimentally tested 1.09 cm thick glass‐fibre woven‐roving/polyester resin composite panel is analysed using the numerical model. Results are presented in the form of temperature, pore pressure, deformation, strain and stress profiles and discussed. The maximum normal stress failure criterion is used in order to establish the load‐bearing capability of the composite panel. Significant pore gas pressure build‐ups (to 0.8 MPa and higher) have been perceived at high thermo‐chemical decomposition rates where the material experiences a complex expansion/contraction phenomenon. It is found that the composite panel experiences structural instability at elevated temperatures up to 300°C but retains its integrity even under moderate external loading. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A continuum‐based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic response of non‐linear structural systems with elastic–plastic material and large deformation. The methodology is aimed for applications in non‐linear dynamic problems, such as crashworthiness design. The first‐order variations of the energy forms, load form, and kinematic and structural responses with respect to sizing design variables are derived. To obtain design sensitivities, the direct differentiation method and updated Lagrangian formulation are used since they are more appropriate for the path‐dependent problems than the adjoint variable method and the total Lagrangian formulation, respectively. The central difference method and the finite element method are used to discretize the temporal and spatial domains, respectively. The Hughes–Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and Jaumann rate‐based incrementally objective stress integration scheme are used to handle the finite strain and rotation. An elastic–plastic material model with combined isotropic/kinematic hardening rule is employed. A key development is to use the radial return algorithm along with the secant iteration method to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the finite difference results. Design optimization is carried out using the design sensitivity information. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The mean dilatation method effectively involves bi‐linear displacements and a constant pressure and is often known as the Q1‐P0 formulation. Its non‐linear implementation was originally derived as a three‐field formulation which included the volume ratio via the Jacobian, J, of the deformation gradient as an additional separate variable. However, the latter term was not directly required in the numerical implementation once J was assumed constant along with the pressure. This formulation will here be termed the non‐linear Q1‐P0 method. It is known to give good solutions for many practical large‐strain elasto‐plastic problems. However, for some problems, it has been shown to be prone to severe ‘hour‐glassing’. With a view to remedying this situation, we here re‐visit the three‐field formulation and derive a modified form, which although variationally valid, is over‐stiff in comparison to the original procedure (here simply called the Q1‐P0 method). However, the concepts lead to a natural method for stabilising the Q1‐P0 technique. The associated tangent stiffness matrix is symmetric. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes an Eulerian formulation for large deformation solid dynamics. In the present Eulerian approach, an advective equation is solved using the Stream‐Upwind/Petrov–Galerkin finite element method. The Eulerian finite element method is applied to path‐dependent solid analyses such as impact bar and ductile necking problems. These computational results using the Eulerian finite element method are compared with the results obtained from using the Lagrangian finite element method and an Eulerian formulation based on a finite difference method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Discontinuous Galerkin (DG) methods provide a means of weakly enforcing the continuity of the unknown‐field derivatives and have particular appeal in problems involving high‐order derivatives. This feature has previously been successfully exploited (Comput. Methods Appl. Mech. Eng. 2008; 197 :2901–2929) to develop a formulation of linear Kirchhoff–Love shells considering only the membrane and bending responses. In this proposed one‐field method—the displacements are the only unknowns, while the displacement field is continuous, the continuity in the displacement derivative between two elements is weakly enforced by recourse to a DG formulation. It is the purpose of the present paper to extend this formulation to finite deformations and non‐linear elastic behaviors. While the initial linear formulation was relying on the direct linear computation of the effective membrane stress and effective bending couple‐stress from the displacement field at the mid‐surface of the shell, the non‐linear formulation considered implies the evaluation of the general stress tensor across the shell thickness, leading to a reformulation of the internal forces of the shell. Nevertheless, since the interface terms resulting from the discontinuous Galerkin method involve only the resultant couple‐stress at the edges of the shells, the extension to non‐linear deformations is straightforward. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
This work deals with the formulation and implementation of finite deformation viscoplasticity within the framework of stress‐based hybrid finite element methods. Hybrid elements, which are based on a two‐field variational formulation, are much less susceptible to locking than conventional displacement‐based elements. The conventional return‐mapping scheme cannot be used in the context of hybrid stress methods since the stress is known, and the strain and the internal plastic variables have to be recovered using this known stress field. We discuss the formulation and implementation of the consistent tangent tensor, and the return‐mapping algorithm within the context of the hybrid method. We demonstrate the efficacy of the algorithm on a wide range of problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A stabilized, mixed finite element formulation for modelling viscoplastic flow, which can be used to model approximately steady‐state metal‐forming processes, is presented. The mixed formulation is expressed in terms of the velocity, pressure and state variable fields, where the state variable is used to describe the evolution of the material's resistance to plastic flow. The resulting system of equations has two sources of well‐known instabilities, one due to the incompressibility constraint and one due to the convection‐type state variable equation. Both of these instabilities are handled by adding mesh‐dependent stabilization terms, which are functions of the Euler–Lagrange equations, to the usual Galerkin method. Linearization of the weak form is derived to enable a Newton–Raphson implementation into an object‐oriented finite element framework. A progressive solution strategy is used for improving convergence for highly non‐linear material behaviour, typical for metals. Numerical experiments using the stabilization method with hierarchic shape functions for the velocity, pressure and state variable fields in viscoplastic flow and metal‐forming problems show that the stabilized finite element method is effective and efficient for non‐linear steady forming problems. Finally, the results are discussed and conclusions are inferred. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A new meshfree formulation of stress‐point integration, called the floating stress‐point integration meshfree method, is proposed for the large deformation analysis of elastic and elastoplastic materials. This method is a Galerkin meshfree method with an updated Lagrangian procedure and a quasi‐implicit time‐advancing scheme without any background cell for domain integration. Its new formulation is based on incremental equilibrium equations derived from the incremental virtual work equation, which is not generally used in meshfree formulations. Hence, this technique allows the temporal continuity of the mechanical equilibrium to be naturally achieved. The details of the new formulation and several examples of the large deformation analysis of elastic and elastoplastic materials are presented to show the validity and accuracy of the proposed method in comparison with those of the finite element method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
Stabilized stress‐point integration schemes based on gradient stabilization and dilatational stabilization methods are presented for linear elastostaticity problems in the framework of element‐free Galerkin (EFG) method. The instability in stress fields associated with the stress‐point integration is treated by the addition to the Galerkin weak form of stabilization terms which contain product of the gradient of the residual or the trace of the gradient of the residual; the latter is called dilatational stabilization. Numerical results show that the oscillations in the stress fields are successfully removed by the presented stabilization methods, and that the convergence and stability properties of direct stress‐point integration are greatly improved. These stabilization methods are particularly suitable for the solution of non‐linear continua with explicit time integration methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号