首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The numerical manifold method is a cover-based method using mathematical covers that are independent of the physical domain. As the unknowns are defined on individual physical covers, the numerical manifold method is very suitable for modeling discontinuities. This paper focuses on modeling complex crack propagation problems containing multiple or branched cracks. The displacement discontinuity across crack surface is modeled by independent cover functions over different physical covers, while additional functions, extracted from the asymptotic near tip field, are incorporated into cover functions of singular physical covers to reflect the stress singularity around the crack tips. In evaluating the element matrices, Gaussian quadrature is used over the sub-triangles of the element, replacing the simplex integration over the whole element. First, the method is validated by evaluating the fracture parameters in two examples involving stationary cracks. The results show good agreement with the reference solutions available. Next, three crack propagation problems involving multiple and branched cracks are simulated. It is found that when the crack growth increment is taken to be 0.5hda≤0.75h, the crack growth paths converge consistently and are satisfactory.  相似文献   

2.
3.
The transient elastodynamic response of the finite punch and finite crack problems in orthotropic materials is examined. Solution for the stress intensity factor history around the punch corner and crack tip is found. Laplace and Fourier transforms together with the Wiener–Hopf technique are employed to solve the equations of motion in terms of displacements. A detailed analysis is made in the simplified case when a flat rigid punch indents an elastic orthotropic half-plane, the punch approaches with a constant velocity normally to the boundary of the half-plane. An asymptotic expression for the singular stress near the punch corner is analyzed leading to an explicit expression for the dynamic stress intensity factor which is valid for the time the dilatational wave takes to travel twice the punch width. In the crack problem, a finite crack is considered in an infinite orthotropic plane. The crack faces are loaded by impact uniform pressure in mode I. An expression for the dynamic stress intensity factor is found which is valid while the dilatational wave travels the crack length twice. Results for orthotropic materials are shown to converge to known solutions for isotropic materials derived independently.  相似文献   

4.
This paper presents fractal finite element based continuum shape sensitivity analysis for a multiple crack system in a homogeneous, isotropic, and two dimensional linear-elastic body subjected to mixed-mode (modes I and II) loading conditions. The salient feature of this method is that the stress intensity factors and their derivatives for the multiple crack system can be obtained efficiently since it only requires an evaluation of the same set of fractal finite element matrix equations with a different fictitious load. Three numerical examples are presented to calculate the first-order derivative of the stress intensity factors or energy release rates.  相似文献   

5.
In this study the fracture mechanics parameters, including the strain energy release rate, the stress intensity factors and phase angles, along the curvilinear front of a three-dimensional bimaterial interface crack in electronic packages are considered by using finite element method with the virtual crack closure technique (VCCT). In the numerical procedure normalized complex stress intensity factors and the corresponding phase angles (Rice, J Appl Mech 55:98–103, 1988) are calculated from the crack closure integrals for an opening interface crack tip. Alternative procedures are also described for the cases of crack under inner pressure and crack faces under large-scale contact. Validation for the procedure is performed by comparing numerical results to analytical solutions for the problems of interface crack subjected to either remote tension or mixed loading. The numerical approach is then applied to study interface crack problems in electronic packages. Solutions for semi-circular surface crack and quarter-circular corner crack on the interface of epoxy molding compound and silicon die under uniform temperature excursion are presented. In addition, embedded corner delaminations on the interface of silicon die and underfill in flip-chip package under thermomechanical load are investigated. Based on the distribution of the fracture mechanics parameters along the interface crack front, qualitative predictions on the propensity of interface crack propagation under thermomechanical loads are given.  相似文献   

6.
The method of fundamental solutions is applied to the computation of stress intensity factors in linear elastic fracture mechanics. The displacements are approximated by linear combinations of the fundamental solutions of the Cauchy–Navier equations of elasticity and the leading terms for the displacement near the crack tip. Two algorithms are developed, one using a single domain and one using domain decomposition. Numerical results are given. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, an adaptive finite element analysis is presented for 3D modeling of non-planar curved crack growth. The fracture mechanical evaluation is performed based on a general technique for non-planar curved cracks. The Schollmann’s crack kinking criterion is used for the process of crack propagation in 3D problems. The Zienkiewicz-Zhu error estimator is employed in conjunction with a weighted SPR technique at each patch to improve the accuracy of error estimation. Applying the proposed technique to 3D non-planar curved crack growth problems shows significant improvements particularly at the boundaries and near crack tip regions. Several numerical examples are presented to illustrate the robustness of the proposed technique.  相似文献   

8.
The plastic deformation behavior of 1.2765 DIN steel during forging process and the feasibility of simulation in the forging of 1.2765 DIN steel at four different temperatures has investigated by using professional plastic distorting software DEFORM 3D v11.0. Additionally, the total load, effective stress, effective strain, and total velocity at four different points of the billet material has been simulated during the upsetting process. The main finding of this study are as follows: 1) during the forging process, the coefficient of friction between the die and the specimen has been influenced more on the flow stress of the material. 2) Effective strain at side edges of the specimen has reduced due to lower recrystallization temperature. 3) Velocity of the particle at side edges has been more due to the unrestricted movement of particles during the forging process. It has also concluded that the particles located at side edges, faces, and near to the top head of the specimen were exceeding stress value compared to allowable stress.  相似文献   

9.
对表面裂纹复合型应力强度因子的研究一直是线弹性断裂力学中的重要课题,例如弯扭组合载荷下圆管半椭圆表面裂纹应力强度因子的计算,到现在也没有一个正确的分析解。考虑到裂尖的应力奇异性,在裂纹前沿手动设置三维奇异单元,用三维有限元法中的1/4点位移法计算弯扭组合载荷下圆管表面椭圆裂纹前沿的Ⅰ型、Ⅱ型和Ⅲ型应力强度因子,并分析其随裂纹深度增加时的变化规律。运用该方法计算了有关模型的应力强度因子,并与该模型的实验值进行了比较,计算结果和实验结果吻合良好。  相似文献   

10.
The interaction integral is a conservation integral that relies on two admissible mechanical states for evaluating mixed‐mode stress intensity factors (SIFs). The present paper extends this integral to functionally graded materials in which the material properties are determined by means of either continuum functions (e.g. exponentially graded materials) or micromechanics models (e.g. self‐consistent, Mori–Tanaka, or three‐phase model). In the latter case, there is no closed‐form expression for the material‐property variation, and thus several quantities, such as the explicit derivative of the strain energy density, need to be evaluated numerically (this leads to several implications in the numerical implementation). The SIFs are determined using conservation integrals involving known auxiliary solutions. The choice of such auxiliary fields and their implications on the solution procedure are discussed in detail. The computational implementation is done using the finite element method and thus the interaction energy contour integral is converted to an equivalent domain integral over a finite region surrounding the crack tip. Several examples are given which show that the proposed method is convenient, accurate, and computationally efficient. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An over‐deterministic method has been employed for calculating the stress intensity factors (SIFs) as well as the coefficients of the higher‐order terms in the Williams series expansions in cracked bodies, using the conventional finite element analysis. For a large number of nodes around the crack tip, an over‐determined set of simultaneous linear equations is obtained, and using the fundamental concepts of the least‐squares method, the coefficients of the Williams expansion can be calculated for pure mode I, pure mode II and mixed mode I/II conditions. A convergence study has been conducted to examine the effects of the number of nodes used, the number of terms in Williams expansion and the distance of the selected nodes from the crack tip, on the accuracy of the results. It is shown that the simple method presented in this paper, yields accurate results even for coarse finite element meshes or in the absence of singular elements. The accuracy of SIFs and the coefficients of higher‐order terms are validated by using the available results in the literature.  相似文献   

12.
Results of numerical analysis of stress intensity factors KI for semielliptical surface cracks in the WWER-1000 reactor pressure vessel by emergency cooling simulation with known engineering procedures, the equivalent spatial integration and direct methods are presented. Engineering procedures employ the results of numerical solution of axially symmetric boundary value problems of thermoelasticity based on the mixed mesh-projection scheme of the finite element method implemented in the RELAX software. The three-dimensional KI computations were performed with the SPACE software. __________ Translated from Problemy Prochnosti, No. 2, pp. 45–51, March–April, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号