首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since the way that human bone cells behave on contact with different surfaces topographies seems to be crucial to osseointegration, the aim of the present study is to evaluate the participation of some micro‐ and nanosized features of Ti surfaces in the short‐term response of primary human osteoblast‐like cells (HOC). Surfaces were prepared as ground (G‐Ti), hydrofluoric acid etched (HF‐Ti), and sandblasted/HF‐etched (SLA‐Ti), and analyzed using both three‐dimensional (3D) profilometer and atomic force microscope (AFM). Cell morphology was assessed using scanning electron microscopy (SEM) after 4 and 24 h in culture. Cell viability, adhesion, and spreading were also evaluated 4 and 24 h after seeding over each surface. Data were compared by analysis of variance (ANOVA) complemented by Duncan test. Cell morphology, cell counting, and membrane integrity (Neutral Red, NR) were not affected by surface treatment at any time. However, HF‐Ti presented the smallest surface area and did not increase tetrazolium hydroxide (XTT) reduction from 4 to 24 h. On the other hand, a higher level of spreading was only found on the rougher and isotropic SLA‐Ti at 4 h. In conclusion, although all evaluated Ti surfaces allowed HOC short‐term adhesion, the finer topography introduced by HF as single treatment did not favor HOC mitochondrial activity and spreading. The rougher and more complex SLA surface seems to provide a better substrate for HOC short‐term response. SCANNING 34: 378‐386, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The aim was to examine the effect of retreatment process on the surface roughness and nickel titanium (NiTi) composition of ProTaper Universal Retreatment (PTUR; consists of 3 files; D1, D2, D3) and WaveOne Gold (WOG) (primary) instruments. Twenty extracted mandibular molar teeth with severe curved (30–40°) mesial roots were selected and divided into two groups (n = 10) based on the instrument used for the removal of the root canal filling. Before and after using the instruments in two canals, they were subjected to atomic force microscopy (AFM) and energy dispersive X‐ray spectrophotometry (EDX) analysis. The EDX analysis data and roughness average (Ra) and root mean square (RMS) values were analyzed statistically using a one‐way analysis of variance and post hoc Tukey's test at the 5% significant level. There was no significant difference between the new and used D1 and D2 PTUR and WOG instruments in terms of the Ni composition (p > .05). The Ti contents of the used D2 and D3 PTUR instruments were lower those of the new instruments (p < .05). In both new and used instruments, PTUR and WOG have no difference in terms of Ra and RMS values. (p > .05). The Ra and RMS values of the PTUR and WOG systems significantly increased after removal of the root canal filling (p < .05). The use of PTUR and WOG instruments for removal of root canal filling in severely curved root canals affected the surface topography of the files. The NiTi composition of the WOG instruments was unaffected by the retreatment process.  相似文献   

3.
The quantitative determination of surface roughness is of vital importance in the field of precision engineering. This paper presents an experimental study of the roughness analyses for the flat and spherical surfaces of machined metal in order to compare the roughness data taken from the cloud data produced by the stylus type profilometer and two optical-based measurement instruments, namely the infinite focus microscope and the confocal laser scanning microscope.In this experimental study, the roughness measurements for fifteen flat and six spherical surfaces were repeated six times using three different measurement instruments. Great care was paid to measure the same location for each measurement. For the comparison of the measurement techniques, the same measurement process was applied to the flat and spherical surfaces individually, and the configurations of the measurement instruments (filter type, cut-off, resolution etc.) were synchronized. Ra, two-dimensional (2D) roughness parameter and Sa, three-dimensional (3D) roughness parameter were also compared. The measurement results for the samples having spherical surfaces indicated a considerably high difference in values taken from the stylus profilometer and two optical-based measurement instruments in contrast to those for flat surfaces.  相似文献   

4.
The purpose of this study was to evaluate the surface roughness (Ra), and the morphology and composition of filler particles of different composites submitted to toothbrushing and water storage. Disc‐shaped specimens (15 mm × 2 mm) were made from five composites: two conventional (Z100?, and Filtek? Supreme Ultra Universal, 3M), one “quick‐cure” (Estelite ∑ Quick, Tokuyama), one fluoride‐releasing (Beautiful II, Shofu), and one self‐adhering (Vertise Flow, Kerr) composite. Samples were finished/polished using aluminum oxide discs (Sof‐Lex, 3M), and their surfaces were analyzed by profilometry (n = 5) and scanning electron microscopy (SEM; n = 3) at 1 week and after 30,000 toothbrushing cycles and 6‐month water storage. Ra data were analyzed by two‐way analysis of variance and Tukey's test (α = 0.05). Filler particles morphology and composition were analyzed by SEM and X‐ray dispersive energy spectroscopy, respectively. Finishing/polishing resulted in similar Ra for all the composites, while toothbrushing and water storage increased the Ra of all the tested materials, also changing their surface morphology. Beautifil II and Vertise Flow presented the highest Ra after toothbrushing and water storage. Filler particles were mainly composed of silicon, zirconium, aluminum, barium, and ytterbium. Size and morphology of fillers, and composition of the tested composites influenced their Ra when samples were submitted to toothbrushing and water storage.  相似文献   

5.
The objective of this study was to characterize the three‐dimensional (3D) surface micromorphology of the ceramics produced from nanoparticles of alumina and tetragonal zirconia (t‐ZrO2) with addition of Ca+2 for sintering improvement. The 3D surface roughness of samples was studied by atomic force microscopy (AFM), fractal analysis of the 3D AFM‐images, and statistical analysis of surface roughness parameters. Cube counting method, based on the linear interpolation type, applied for AFM data was used for fractal analysis. The morphology of non‐modified ceramic sample was characterized by the rather big (1–2 μm) grains of α‐Al2O3 phase with a habit close to hexagonal drowned in solid solution of t‐ZrO2 with smooth surface. The pattern surfaces of modified composite content a little amount of elongated prismatic grains with composition close to the phase of СаСеAl3О7 as well as hexahedral α‐Al2O3‐grains. Fractal dimension, D, as well as height values distribution have been determined for the surfaces of the samples with and without modifying. It can be concluded that the smoothest surface is of the modified samples with Ca+2 modifier but the most regular one is of the non‐modified samples. A connection was observed between the surface morphology and the physical properties as assessed in previous works. Microsc. Res. Tech. 78:840–846, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
This study aimed to evaluate the effect of four chemomechanical surface treatments on the surface average microroughness and profile of laser‐sintered and vacuum‐cast dental prosthetic structures. Square‐shaped blocks (10 mm × 10 mm × 1.5 mm) were prepared as follows: (1) laser‐sintered Co? Cr (L) (ST2724G); (2) cast Co? Cr (C) (Gemium‐cn); and (3) cast Ni? Cr? Ti (T) (Tilite). Specimens of each alloy group were randomly divided into five subgroups (n = 10 each), depending on the conditioning method used: (1) no treatment (control); (2) sandblasting (125 μm Al2O3‐particles); (3) silica coating (50 μm silica‐modified Al2O3‐particles); (4) oxidation; and (5) oxidation plus opacification. Subgroups 2 and 3 represent “inner” pretreatments proposed for ceramometal restorations to improve the metal surface area available for luting cements. Subgroups 4 and 5 are the “outer” pretreatments required for bonding the aesthetic veneering ceramics to the underlying metal frameworks. Average surface roughness (Ra/μm) was determined using a surface profilometer. Data were analyzed by two‐way ANOVA and Student–Newman–Keuls tests (α = 0.05). Metal surface topography was SEM‐analyzed. Despite the inner pretreatment applied, L samples resulted in the highest microroughness (P < 0.001), whereas sandblasting produced a surface‐smoothing effect in cast specimens. After oxidation, a significant increase in surface roughness occurred in all groups compared with controls, L specimens being the roughest (P < 0.001). Opacification caused a flattening effect of all oxidized structures; all opacified groups resulting in similar microroughness. Laser sintering of Co? Cr enhances the roughness of metal structures, which may improve the frameworks' microretention of the cements, and of the opaquer before the copings are veneered with the aesthetic ceramics. Microsc. Res. Tech. 75:1206–1212, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The objective of this study was to examine the effects of extrinsic or intrinsic acids on nanofilled and bulk fill resin materials in vitro. A total of 90 disks were prepared using dental restorative material (Filtek Z350XT, GrandioSO, Filtek Bulk Fill, X‐tra fil). Thirty disks of each material were sub‐divided into three groups (n = 10) that were immersed for 7 days in deionized water (DW), 5% citric acid (CA—pH 2.1), or 0.1% hydrochloric acid (HCl—pH = 1.2). Surface hardness and roughness (stylus profilometer by Ra parameter) analysis were performed before and after immersion. Morphological changes were evaluated by scanning electron microscopy. The data were analyzed by two‐way ANOVA and Tukey's test (α = 0.05). All tested materials did not show significant differences in the effects of the DW, CA, or HCl solutions on surface roughness (p = .368). Likewise, the hardness loss was not affected by the solutions tested (p = .646), but there was a difference in the resin type (p = .002). Filtek Bulk Fill resin hardness was less affected, while Filtek Z350XT and GrandioSO presented the most hardness loss after 7 days of solution immersion. In terms of this experimental study, the results demonstrate the effectiveness of the mechanical properties (roughness and hardness surface) of nanofilled and bulk fill resin materials to resist erosion from extrinsic and intrinsic acids, therefore being potential candidates for dental applications.  相似文献   

8.
The aim of this study is to evaluate the effect of whitening toothpaste on the surface roughness of resin-based restorative materials by different measurement methods. Twenty four specimens from each of human enamel, a microhybrid composite and two nanohybrid composites discs (8.0 diameter × 4.0 mm thick) were divided into two groups (n = 12) according to toothbrushing solutıon and subjected to simulation toothbrushing (30,000 cycles) with both distilled water and whitening toothpaste containing blue covarine. Surface roughness was examined using atomic force microscopy (AFM), profilometer, and scanning electron microscopy (SEM), and the data obtained were subjected to analysis. Ra values of Tescera (TES) were significantly higher than Sonicfill 2 (SF2) when brushing both toothbrushing solutions for initial or 30,000 cycles. Roughness increased for SF2 and TES when brushed for 30,000 cycles and was higher than enamel and Herculite XRV Ultra (HXU). Human enamel was obtained lower surface roughness values brushed with toothpaste compared with distilled water. Evaluation of the surface roughness of control groups using the AFM revealed no statistically significant difference between the groups, but significant differences were found using a profilometer. The use of abrasive whitening toothpaste containing blue covarine and the number of brushing cycles affect the surface properties of human enamel and the restorative material, and also, the clinical success of the restoration. Toothbrushing for 30,000 cycles increased the surface roughness of all materials. The type of toothbrushing solution partially has affected surface roughness.  相似文献   

9.
For the long‐term success of implants, it is necessary to achieve a direct contact between the implant and the subjacent bone. To avoid bacterial penetration that could adversely affect the initial wound healing as well as the long‐term behavior of the implants, an early tissue barrier must form that is able to protect the biological peri‐implant structures. Given the need of an effective tissue early barrier around dental implants, the present study evaluated, in vitro, the influence of physical and chemical characteristics of two implant abutment surfaces on gingival epithelial cells (OBA‐9) adhesion. To this end, titanium (Ti) and zirconia (ZrO2) disk‐shaped specimens were used mimicking the abutment components surfaces, while bovine enamel (BE) and glass cover slips (GCS) disks served as positive and negative controls, respectively. Roughness and surface free energy (SFE) of all materials were evaluated previously to cellular adhesion step. In sequence, the effect of each material on cells morphology and viability was analyzed after 1 and 24 hr. The results showed that roughness and SFE had no effect on the cell viability data or on their interaction (p = .559), independent of a post‐contact analysis of 1 or 24 hr. However, cells attachment and spreading increased after 24 hr on Ti and ZrO2 than BE, corresponding to the highest SFE values. SFE appears to be an important property interfering on the quality of the soft tissue surrounding dental implants. These data can be considered a trigger point for developing new material surfaces.  相似文献   

10.
Laser irradiation has been proposed as a preventive method against dental caries since it is capable to inhibit enamel demineralization by reducing carbonate and modifying organic matter, yet it can produce significant morphological changes. The purpose of this study was to evaluate the influence of Er:YAG laser irradiation on superficial roughness of deciduous dental enamel and bacterial adhesion. Fifty‐four samples of deciduous enamel were divided into three groups (n = 18 each). G1_control (nonirradiated); G2_100 (7.5 J/cm2) and G3_100 (12.7 J/cm2) were irradiated with Er:YAG laser at 7.5 and 12.7 J/cm2, respectively, under water irrigation. Surface roughness was measured before and after irradiation using a profilometer. Afterwards, six samples per group were used to measure bacterial growth by XTT cell viability assay. Adhered bacteria were observed using confocal laser scanning microscopy (CLSM) and a scanning electron microscopy (SEM). Paired t‐, one‐way analysis of variance (ANOVA), Kruskal‐Wallis and pairwise Mann–Whitney U tests were performed to analyze statistical differences (p < .05). Before treatment, samples showed homogenous surface roughness, and after Er:YAG laser irradiation, the surfaces showed a significant increase in roughness values (p < .05). G3_100 (12.7 J/cm2) showed the highest amount of Streptococcus mutans adhered (p < .05). The increase in the roughness of the tooth enamel surfaces was proportional to the energy density used; the increase in surface roughness caused by laser irradiation did not augment the adhesion of Streptococcus sanguinis; only the use of the energy density of 12.7 J/cm2 favored significantly the adhesion of S. mutans.  相似文献   

11.
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X‐ray spectroscopy; and transmission electron microscopy (TEM) for high‐resolution imaging. FIB was used to prepare thin sections of the cell‐material interface for TEM, or for three‐dimensional electron tomography. Cells were cultured on laser‐sintered Ti‐6Al‐4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell‐material cross‐sectional interface at the single cell level across multiple high‐resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell‐material interface.  相似文献   

12.
针对具有复杂曲面的钛合金工件磨粒流抛光后表面粗糙度Ra不均匀问题,提出一种具有扰流结构的仿型约束加工流道。借助计算流体动力学(CFD)分析软件,结合SST k-ω湍流模型、离散相模型(DPM)和Oka冲蚀模型,仿真分析原始流道和5种不同扰流角度的扰流流道内磨粒流动力学特性。数值模拟结果表明:扰流流场中的磨粒流相较于原始流场在工件表面具有更大的湍流动能、动压力和冲蚀速率,其中扰流角度为30°时冲蚀均匀性较好。基于仿真条件搭建了磨粒流加工试验平台,使用原始流道和30°扰流流道分别进行了加工试验。试验结果表明:使用原始流道加工5 h后,工件表面曲率不同区域的表面粗糙度Ra值分散,加工效果均匀性较差;使用扰流流道加工5 h后,工件表面各区域表面粗糙度Ra的均匀性明显优于无扰流流场的加工均匀性。  相似文献   

13.
Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445–685 nm by surface profilometer. X‐ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (?111) plane. The surface morphology and topography of monoclinic‐phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ~19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Microsc. Res. Tech., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The aim of this study was to analyse the influence of the artificial saliva on a three‐dimensional (3‐D) surface texture of contemporary dental composites. The representatives of four composites types were tested: nanofilled (Filtek Ultimate Body, FUB), nanohybrid (Filtek Z550, FZ550), microfilled (Gradia Direct, GD) and microhybrid (Filtek Z250, FZ250). The specimens were polymerised and polished by the multistep protocol (SuperSnap, Shofu). Their surface was examined, before and after 3 weeks’ exposure to artificial saliva storage. The surface texture was analysed using the atomic force microscope (AFM). The obtained images were processed to calculate the areal autocorrelation function (AACF), anisotropy ratio Str (texture aspect ratio), and structure function (SF). The log–log plots of SF were used to calculate fractal properties, such as fractal dimension D, and pseudo‐topothesy K. The analysis showed changes in surface anisotropy ratio Str values, which became higher, whereas the Sq roughness (root‐mean‐square) reduced after the artificial saliva storage. All the samples exhibited bifractal structure before the saliva treatment, but only half of them remained bifractal afterwards (GD, FZ250), whereas the other half turned into a monofractal (FUB, FZ550). The cube‐count fractal dimension Dcc was found to be material‐ and treatment‐insensitive.  相似文献   

15.
Obtaining clean and smooth root canal walls is the ideal clinical outcome of the cleaning and shaping stage in root canal treatment. This study compares the surface roughness of root canal surfaces instrumented with a NiTi filing system with either adaptive reciprocating (AR) or continuous rotation (CR). Root canal cleaning and shaping was carried out on the mesial canals of 24 extracted first molars roots with either AR or CR. Roots were split in half and the surface roughness of their canals was evaluated in 12 three dimensional roughness reconstructions using a scanning electron microscope. Rz (nm) values were calculated in three areas of each reconstruction and analyzed (α = 0.05). Mann‐Whitney tests showed that surface roughness was significantly higher overall in the AR group (Rz = 967 ± 250 nm) compared with the CR group (Rz = 739 ± 239 nm; p = 0.044). The roughness values generally increased from apical towards the coronal third in both groups. A less aggressive finishing file or a continuous rotary system to end the cleaning and shaping stage may be beneficial to reduce roughness of the root canal surface.  相似文献   

16.
The nanoscale surface of titanium has been studied to improve the cellular recognition of the biological microenvironment and to increase bone–implant interaction. The aim of this study was to analyze the effect of a titanium oxide (TiO2) nanotube surface with a machined surface on osseointegration tibia implants without primary stability. This study used an experimental design, divided into two groups (n = 16): commercially pure titanium machined implants (Cp‐Ti Ma) and commercially pure titanium anodized implants (Cp‐Ti An). Titanium nanotubes were produced by anodic oxidation, and the topography of surface was analyzed using field emission scanning microscope (FE‐SEM). The implants (2.1 × 2.8 mm Ø) were surgically placed in the right tibia (defects with milling drill 2.5 × 3.2 mm Ø) of 32 Wistar male rats (250–300 g). The animals were euthanized at 7 weeks postoperatively. The maximum value of removal torque was measured (N/cm) in the right tibia half of each group (8 animals/8 tibiae); the other half of each group underwent a nondecalcified protocol, stained with Stevenel blue/Alizarin red, and the formation of bone tissue in close contact to the implant was measured. The obtained data were analyzed statistically (t test). Differences were considered statistically significant for α < 0.05. Cp‐Ti An implants were significantly higher in removal torque and peri‐implant bone healing compared with Cp‐Ti Ma implants (p < .01). Within the limitations of this study, it was observed that the surface modification of titanium by anodization (TiO2 nanotubes) can improve osseointegration, and this may be very useful to reduce the time required for peri‐implant bone formation.  相似文献   

17.
In this paper, results from an optical technique for measuring surface roughness using image analysis of speckle pattern images are presented. The technique coined as statistical properties of binary images (SPBI) utilizes the combined effects of speckle and scattering phenomena. The speckle patterns obtained with a He–Ne laser were binarized and examined. The parameters such as bright and dark regions and their ratios obtained from this model to evaluate the surface roughness were compared with the surface roughness parameter Ra obtained from a profilometer. It was found that there is a strong relationship between these parameters and Ra, especially in the range of λ<Ra<2λ where λ is He–Ne laser wavelength. Although, it is a relative method, it has great potential to be used for in-process measurement and automation due to the simplicity of optical system used. The proposed method for the surface roughness combined with a non-contact optical measuring system is applied to samples from 0.5825 to 1.9 μm of steel (CK 45) through CNC face-milling process.  相似文献   

18.
This in situ study evaluated the tubular occlusion caused by 4% TiF4 gel on the surface of eroded/abraded dentin. Sixty human dentin samples were eroded in vitro and assigned into six groups (n = 10) according to the in situ surface treatment and number of cycling days: 4% TiF4 gel applied once (TiF41), twice (TiF42), or three times (TiF43) followed by 2, 4, and 6 days of erosive/abrasive in situ cycling, respectively. Control groups (no treatment) were subjected to 2 (C1), 4 (C2), and 6 (C3) days of erosive/abrasive in situ cycling only. A seventh group (n = 10) was comprised by in vitro uneroded samples (UN), subjected to 6 days of in situ erosive/abrasive cycling. Each cycling day consisted on six erosive (0.5% citric acid, pH 2.6) and one abrasive events. Environmental scanning electron microscopy micrographs were taken. For all groups, blinded examiners assessed dentin tubules occlusion using visual scores (0—unoccluded, 1—partially occluded by granular deposits, 2—partially occluded by reduction in tubular lumen into diamond shape, 3—completely occluded) on images captured prior and after the in situ phase. Scheirer‐Ray‐Hare test demonstrated that treatments significantly affected tubule occlusion (p < .001). Dunn's test showed that tubule occlusion in TiF43 was significantly higher than in C1. Tubule occlusion in remaining groups did not differ from that observed in groups TiF43 and C1. Tubule occlusion was significantly higher after in situ phase. It may be suggested that TiF4, when applied three times, was able to positively change tubule occlusion of dentin samples.  相似文献   

19.
The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号