首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Novel block copolymers containing aromatic polyamide (aramid) and fluoroethylene segments were synthesized by a two‐step solution polycondensation. This synthetic method could control the chain‐length of aramid segments and these copolymers could have high structural regularity. The number‐average molecular weight ( ) of one of these polymers is over 2.0 × 104. Incorporating fluoroethylene segments improves the solubility of the resulting polymer compared with conventional aramids.

The synthesis of the fluoroethylene‐aramid block copolymers.  相似文献   


2.
The copolymerization of 1,8‐naphthalimide derivatives (as fluorophore) with acrylonitrile has been investigated. The photophysical characteristics of monomeric and polymeric fluorophores in N,N‐dimethylformamide solution have been determined and discussed. During copolymerization, no changes in the chromophoric systems of the fluorophore occur. The influence of the studied monomeric 1,8‐naphthalimide fluorophores upon the structurally bleached polyacrylonitrile has been determined. Infrared absorption characteristics of the polymerizable 4‐alkoxy‐ and 4‐allyloxy‐N‐substituted‐1,8‐naphthalimides have been measured and discussed. The effect of the substituents upon the vibration frequencies of the carbonyl and allylic groups has been established.

Blue fluorescent polyacrylonitrile copolymers with 1,8‐naphthalimides side‐group.  相似文献   


3.
Summary: Syntactic foams containing 0.9, 1.76, 2.54, 3.54 and 4.5 vol.‐% of E‐glass fibres in the form of chopped strands were processed and subjected to three‐point bending tests. The results showed that introduction of chopped strand fibres into the syntactic foam system increased the flexural strength. The values increased with the amount of fibres in the foam system except for the one containing 3.5 vol.‐% of fibres, which showed a lower value than other fibre‐reinforced systems, thereby deviating from the trend. This exception was attributed to the difference in processing route adopted for this particular fibre‐bearing foam. However, in general, the incorporation of chopped strand fibres improved the flexural behaviour of the syntactic foam system without much variation in density, thus making reinforced syntactic foams to act as better and improved core materials for sandwich applications.

Fibre‐debonding and protuberance, and river pattern in a failed sample.  相似文献   


4.
Summary: A customized instrument has been developed as part of multidisciplinary research work relating to the development of a biodegradable vascular scaffold. This instrument aims to measure the mechanical properties of elastic and viscoelastic thin membranes with tissue engineering applications. Uniform and omni‐directional pressure is applied on the whole membrane which is uniformly clamped and submerged into a liquid medium. The mechanical testing described in this study is focused on the stress‐strain curves of polycaprolactone (PCL) films after different treatments. The influence of Dulbecco's modified Eagle's culture medium, L929 fibroblast culture, NaOH treatment and film thickness on the mechanical properties of PCL films was evaluated after different times. These studies show that the PCL degradation process is influenced by immersion in the culture medium, inducing an increment in the slope of the pressure‐dilation curve which is indicative of an increase in the polymer stiffness. On the other hand, long NaOH treatments make PCL films have more flexible behavior.

A computerized version of the instrument: (1) Electrical compressor; (2) Filter; (3) Voltage‐pressure converter; (5) Pressure sensor; (6) Differential pressure sensor; (7–8) Main and auxiliary pipettes; (9) Printed circuit board; (10) Personal computer.  相似文献   


5.
A microfluidic system was designed, fabricated and implemented to study the behavior of polyelectrolyte capsules flowing in microscale channels. The device contains microchannels that lead into constrictions intended to capture polyelectrolyte microcapsules which were fabricated with the well‐known layer‐by‐layer (LbL) assembly technique. The behavior of hollow capsules at the constrictions was visualized and the properties of the capsules were investigated before and after introduction into the device.

Time series of video frames showing capsules being compressed into a constriction.  相似文献   


6.
The viscoelasticity of two thermally crosslinked polymer coatings was examined in terms of relaxation of the applied stress after a sudden strain. Two different transient methods were utilized: flat‐ended cylindrical indentation testing of a polymer film on a rigid substrate and tensile testing of a corresponding free‐standing polymer film. The correlation between tensile and indentation tests was studied. The mechanical response of a viscoelastic layer deposited on a rigid substrate was investigated as a function of indentation depth. There was good agreement between the results of the tensile and indentation tests for thick film layers at moderate indentation depths. The findings indicate that the substrate influences the coating performance by reducing the viscous contribution to the stress response and amplifying the magnitude of the equilibrium modulus for large indentation depths. The indentation method utilized here was shown to be a potentially suitable tool for the determination of Poisson's ratio of polymer films.

  相似文献   


7.
This study reports for the first time on the enhancement of the bleaching effect achieved on cotton using laccase enzyme. Laccases applied in short‐time batchwise or pad‐dry processes prior to conventional peroxide bleaching, improved the end fabric whiteness. The whiteness level reached in the combined enzymatic/peroxide process was comparable to the whiteness in two consecutive peroxide bleaches.

Effect of 10 min laccase pre‐treatment at 60 °C, pH 5 on fabrics whiteness before and after a conventional hydrogen peroxide bleaching.  相似文献   


8.
Summary: Halogen‐free, flame retardant low density polyethylene (LDPE) composites, using magnesium hydroxide sulfate hydrate (MHSH) whiskers as a flame retardant, combined with microencapsulated red phosphorous (MRP) as a synergist, have been prepared using a two‐roll mill. Their fire properties were determined by using the limiting oxygen index (LOI), the UL‐94 test and cone calorimetry. The results showed that MRP was a good synergist in improving the flame retardance of the LDPE/MHSH whisker system. Poly[ethylene‐co‐(vinyl acetate)] (EVA), used as a compatibilizer, increased the fire performance of LDPE/MHSH whisker composites.

HRR curves for LDPE/MHSH whisker composites.  相似文献   


9.
Summary: It is well known that the weight‐average molecular weight ( ) is strictly dependent on conversion in step‐growth polymerizations performed in batch and that the is very sensitive to impurities and molar imbalance. This makes the work of controlling a non trivial job. In this paper a new methodology is introduced for in‐line monitoring and control of conversion and of polyurethanes produced in solution step‐growth polymerizations, based on near‐infrared spectroscopy (NIRS) and torquemetry. A calibration model based on the PLS method is obtained and validated for monomer conversion, while the weight‐average molecular weight is monitored indirectly with the relative shear signal provided by the agitator. Control procedures are then proposed and implemented experimentally to avoid gelation and allow for maximization of . The proposed monitoring and control procedures can also be applied to other step growth polymerizations.

Proposed control scheme.  相似文献   


10.
Summary: Ethylene vinyl acetate (EVA) copolymer/dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) nanocomposites were swelled in xylene under atmospheric condition. Swelling index of these nanocomposites decreased with filler loading indicating that the solvent uptake of these nanocomposites was inversely related to the filler contents. The volume fractions of nanocomposites showed an increasing trend with filler concentration because of unswelling effect exerted by aluminosilicate layers. The cross‐link density was determined using the Flory‐Rehner equation and it was observed that the cross‐link density of these nanocomposites also showed an increasing trend with increasing filler loading. Free energy change (ΔGmix) and the change in entropy (ΔSmix) on swelling of EVA/12Me‐MMT nanocomposites in xylene were calculated and these values reaffirmed that the interaction between polymer chains and silicate layers was very strong which induced remarkable inhibiting ability on EVA matrix when swelled in xylene.

TEM photograph of EVA/12Me‐MMT nanocomposite containing 8 wt.‐% 12Me‐MMT.  相似文献   


11.
The serviceability of non‐return valves has a major influence on the productivity of the injection molding process. During a meeting of experts held at our Institute, it was seen that closing behavior and wear are the key problems encountered in practice. The conducted investigations to tackle these questions have shown that both an improved closing behavior and a lower level of wear can be achieved by reducing the inside radius of the locking ring.

Pressure profile over the length of a non‐return valve (n = 0.4; = 25 000 mm3/s).  相似文献   


12.
Hybrid organic‐inorganic materials based on the sol‐gel synthesis of an organically modified silicon alkoxide have demonstrated their great potential for optical applications. They offer a high versatility in terms of chemical, physical properties and macroscopic shape molding of the final component. Recently, a photolithographic process allowed the generation of relief optical elements without requiring a wet treatment to reveal the latent image. It enabled a low cost, simple and quick method for the fabrication of integrated optical components. The aim of the present paper is to give new insights into the mechanisms of surface self‐corrugation leading to gratings generation in hybrid sol‐gel films. A study of the relief formation was led by giving particular attention to the kinetic aspects of the polymerization of the organic component. The control of the C?C double bonds conversion of methacrylate functionalized alkoxides in case of photopolymerization is therefore an essential issue to tailor material properties. The study also focuses on the influence of physico‐chemical parameters that govern the relief generation and underlines the particular role of temperature. Kinetics of surface corrugation point out the importance of strain relaxation, mass‐transfer by flowing and organic network formation during the photolithographic process. Some illustrations of the generated diffraction gratings are given.

Interferogram of the diffraction grating obtained after 120 s exposure through a chromium mask.  相似文献   


13.
Summary: In the present contribution, polyamide‐6 (PA‐6) solutions were prepared in various pure and mixed‐solvent systems and later electrospun with the polarity of the emitting electrode being either positive or negative. The PA‐6 concentration in the as‐prepared solutions was fixed at 32% w/v. Some of the solution properties, i.e., shear viscosity, surface tension, and conductivity, were measured. Irrespective of the polarity of the emitting electrode, only the electrospinning of PA‐6 solution in formic acid (85 wt.‐% aqueous solution) produced uniform electrospun fibers, while solutions of PA‐6 in m‐cresol or sulfuric acid (either 20 or 40 wt.‐% aqueous solution) did not. In the mixed‐solvent systems, formic acid (85 wt.‐% aqueous solution) was blended with m‐cresol, sulfuric acid (either 20 or 40 wt.‐% aqueous solution), acetic acid, or ethanol in the compositional range of 10–40 vol.‐% (based on the amount of the minor solvent). Generally, the average fiber diameter increased with increasing amount of the minor solvent or liquid. Interestingly, the diameters of the fibers obtained under the negative electrode polarity were larger than those obtained under the positive one.

Optical images of electrospun fibers from solutions of polyamide‐6 in a mixed solvent of 85 wt.‐% formic acid and 20 vol.‐% m‐cresol under positive (left) and negative (right) electrode polarity.  相似文献   


14.
Natural fiber‐reinforced biodegradable polyester composites were prepared from biodegradable polyesters and surface‐untreated or ‐treated abaca fibers (length ca. 5 mm) by melt mixing and subsequent injection molding. Poly(butylene succinate)(PBS), polyestercarbonate (PEC)/poly(lactic acid)(PLA) blend, and PLA were used as biodegradable polyesters. Esterifications using acetic anhydride and butyric anhydride, alkali treatment, and cyanoethylation were performed as surface treatments on the fiber. The flexural moduli of all the fiber‐reinforced composites increased with fiber content. The effect of the surface treatment on the flexural modulus of the fiber‐reinforced composites was not so pronounced. The flexural strength of PBS composites increased with fiber content, and esterification of the fiber by butyric anhydride gave the best result. For the PEC/PLA composites, flexural strength increased slightly with increased fiber content (0–20 wt.‐%) in the case of using untreated fiber, while it increased considerably in the case of using the fiber esterified by butyric anhydride. For the PLA composite, flexural strength did not increase with the fiber reinforcement. The result of soil‐burial tests showed that the composites using untreated fiber have a higher weight loss than both the neat resin and the composites made using acetylated fiber.

Flexural modulus of PBS composites as a function of fiber content.  相似文献   


15.
Summary: Fibrillar silicate (FS)/rubber nanocomposites were successfully prepared by directly mixing modified FS with rubber matrix. It is found that FS could be separated into nano‐fibrils with diameters less than 100 nm by the shear forces during mixing. The stress‐strain characteristics of these composites are similar to those for short micro‐fiber/rubber composites (SFRC). Nevertheless, these FS/rubber composites have some outstanding advantages over the conventional SFRC, even though the reinforcing effect of FS is restricted due to its small shape aspect ratio. More importantly, the differences in mechanical properties of the composites in the two different directions show that SBR/FS and NBR/FS composites both exhibit obvious anisotropy, which strongly depends on the preparation process, FS concentration, and rubber matrix. These factors were thoroughly investigated in this paper, and it can be concluded that the anisotropy of the composites was due to the orientation of nano‐fibrils.

  相似文献   


16.
Using general‐purpose screws to process different types of material offers considerable cost advantages over special‐purpose screws. Designing screws of this type is generally a difficult task, since modifications to different aspects of the geometry can run counter to each other in some cases. Optimization software is thus of particular benefit here. For this reason, a program was developed for the optimization of general‐purpose screws. A central feature of this program is an appraisal system for the computer‐aided evaluation of single‐screw simulations. The performance of the software was verified on the basis of actual extrusion experiments.

Temperature measuring cross for measuring thermal homogeneity.  相似文献   


17.
Summary: Polystyrene (PS) was toughened with ethylene‐propylene‐diene terpolymer (EPDM) in the presence of styrene‐butadiene‐styrene block copolymer (SBS). Incorporation of SBS into the PS/EPDM blends clearly improved the impact properties. For PS/EPDM/SBS (mass ratio: 69/21/10) blends, the notched Charpy impact strength reached a maximum value of 26.3 kJ/m2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that SBS was distributed on the interface between PS and EPDM. Butanone extraction and FTIR analysis found that there was a grafting reaction between PS and EPDM phase during melt compounding. Shearing and processing rheological behaviors of blends were evaluated with a Haake capillary rheometer and a torque rheometer, respectively.

  相似文献   


18.
Summary: Gas‐phase assisted surface polymerization (GASP) of β‐propiolactone (βPL) was investigated using substrate‐supported anionic initiators to produce a strongly bonded poly(β‐propiolactone) (PPL)/CaO composite and a novel PPL crystalline deposit with a high melting point value on Al plates. The polymerization of βPL smoothly proceeded in the gas phase to give high‐molecular‐weight PPLs having high PDI values. An almost linear relationship between value and incremental increase in the deposit suggested the living nature of the GASP of βPL. The obtained polymer‐coated substrates, especially PPL/CaO composite, showed strong interaction at the organic/inorganic interface. Moreover, the thermal and structural analyses of deposits revealed that some specific conformations were formed on CaO powder and Al plate surfaces to give highly crystallized deposits. These results demonstrate that the GASP is an effective method for coating any substrate that has a complex shape and a surface morphology.

Accumulation process of poly(β‐propiolactone) on CaO as substrate‐supported initiator during GASP.  相似文献   


19.
Summary: Poly(ε‐caprolactone)‐polyglycolide‐poly(ethylene glycol) monomethyl ether random copolymers were synthesized from ε‐caprolactone (ε‐CL), glycolide (GA) and poly(ethylene glycol) monomethyl ether (MPEG) using stannous octoate as catalyst at 160 °C by bulk polymerization. The copolymers with different composition were synthesized by adjusting the weight ration of reaction mixture. The resultant copolymer with a weight ratio (10:15:75) of MPEG2000, GA, and CL was characterized by IR, 1H NMR, GPC and DSC. The new biodegradable copolymer has potential for medical applications since it is combined with properties of PCL, PGA and MPEG.

  相似文献   


20.
Summary: Using sulfonium groups to create a novel fiber material, methionine‐containing hybrid fibers were prepared from S‐methylated poly(L ‐methionine) and poly(L ‐lysine, L ‐methionine) solutions with gellan solution by polyion complex (PIC) formation via self‐assembly at the aqueous interface. The breaking strain of the PIC fibers were increased by incorporation of methionine residues into the poly(L ‐lysine). These findings may provide a new approach for preparing a wool‐like fiber in aqueous media using the synthetic water‐soluble methionine‐containing poly(amino acid)s.

SEM image of Met‐containing PIC fiber: (a) poly[Met19Met(SMe)81]‐gellan fiber (magnification, ×500).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号