首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The quadrilateral area coordinate method proposed in 1999 (hereinafter referred to as QACM‐I) is a new and efficient tool for developing robust quadrilateral finite element models. However, such a coordinate system contains four components (L1, L2, L3, L4), which may make the element formulae and their construction procedure relatively complicated. In this paper, a new category of the quadrilateral area coordinate method (hereinafter referred to as QACM‐II), containing only two components Z1 and Z2, is systematically established. This new coordinate system (QACM‐II) not only has a simpler form but also retains the most important advantages of the previous system (QACM‐I). Hence, as an application, QACM‐II is used to formulate a new 4‐node membrane element with internal parameters. The whole process is similar to that of the famous Wilson's Q6 element. Numerical results show that the present element, denoted as QACII6, exhibits much better performance than that of Q6 in benchmark problems, especially for MacNeal's thin beam problem. This demonstrates that QACM‐II is a powerful tool for constructing high‐performance quadrilateral finite element models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
管楠祥  岑松  陈晓明 《工程力学》2007,24(Z2):161-167
利用了点组合广义协调和周广义协调条件,基于四边形面积坐标方法构造了含内参的4结点四边形空间轴对称单元AQACQ6。通过进一步对内参应变矩阵进行合理修正,从而形成新单元AQACQ6M,该单元能够通过强式分片检验。两种单元的位移场都达到对整体坐标的二次完备。数值算例表明:上述轴对称单元不仅精度高,而且抗网格畸变和几乎不可压缩问题能力优于等参单元,显示了面积坐标和广义协调理论的优越性。  相似文献   

4.
An efficient, four‐node quadrilateral shell element is formulated using a linear, first‐order shear deformation theory. The bending part of the formulation is constructed from a cross‐diagonal assembly of four three‐node anisoparametric triangular plate elements, referred to as MIN3. Closed‐form constraint equations, which arise from the Kirchhoff constraints in the thin‐plate limit, are derived and used to eliminate the degrees‐of‐freedom associated with the ‘internal’ node of the cross‐diagonal assembly. The membrane displacement field employs an Allman‐type, drilling degrees‐of‐freedom formulation. The result is a displacement‐based, fully integrated, four‐node quadrilateral element, MIN4T, possessing six degrees‐of‐freedom at each node. Results for a set of validation plate problems demonstrate that the four‐node MIN4T has similar robustness and accuracy characteristics as the original cross‐diagonal assembly of MIN3 elements involving five nodes. The element performs well in both moderately thick and thin regimes, and it is free of shear locking. Shell validation results demonstrate superior performance of MIN4T over MIN3, possibly as a result of its higher‐order interpolation of the membrane displacements. It is also noted that the bending formulation of MIN4T is kinematically compatible with the existing anisoparametric elements of the same order of approximation, which include a two‐node Timoshenko beam element and a three‐node plate element, MIN3. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a four‐node quadrilateral flat shell element is proposed for geometrically nonlinear analysis based on updated Lagrangian formulation with the co‐rotational kinematics concept. The flat shell element combines the membrane element with drilling degrees of freedom and the plate element with shear deformation. By means of these linearized elements, a simplified nonlinear analysis procedure allowing for warping of the flat shell element and large rotation is proposed. The tangent stiffness matrix and the internal force recovery are formulated in this paper. Several classic benchmark examples are presented to validate the accuracy and efficiency of the proposed new and more proficient element for practical engineering analysis of shell structures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The unsymmetric FEM is one of the effective techniques for developing finite element models immune to various mesh distortions. However, because of the inherent limitation of the metric shape functions, the resulting element models exhibit rotational frame dependence and interpolation failure under certain conditions. In this paper, by introducing the analytical trial function method used in the hybrid stress‐function element method, an effort was made to naturally eliminate these defects and improve accuracy. The key point of the new strategy is that the monomial terms (the trial functions) in the assumed metric displacement fields are replaced by the fundamental analytical solutions of plane problems. Furthermore, some rational conditions are imposed on the trial functions so that the assumed displacement fields possess fourth‐order completeness in Cartesian coordinates. The resulting element model, denoted by US‐ATFQ8, can still work well when interpolation failure modes for original unsymmetric element occur, and provide the invariance for the coordinate rotation. Numerical results show that the exact solutions for constant strain/stress, pure bending and linear bending problems can be obtained by the new element US‐ATFQ8 using arbitrary severely distorted meshes, and produce more accurate results for other more complicated problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The development of eight‐node arbitrary quadrilateral membrane elements with drilling degrees of freedom is presented using the compatible displacement interpolation within the element. The element is considered to develop specifically for analysing the in‐plane stiffness of thick floor plates in building systems, particularly the transfer plates in tall buildings as well as pile caps. With a new set of shape functions and following the displacement‐based element procedure, the element stiffness and force vector are derived and nodal displacements are obtained after solving the simultaneous equations; the element stresses are then determined. A wide range of patch tests is conducted to evaluate the consistency and stability of the proposed element. The test results show very good agreement with the exact solutions of the beam theory. Numerical investigations are carried out, showing that the analyses using the proposed elements provide better results than those from the existing methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a shell element for small and large deformations is presented based on the extension of the methodology to derive triangular shell element without rotational degrees of freedom (so‐called rotation‐free). As in our original triangular S3 element, the curvatures are computed resorting to the surrounding elements. However, the extension to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. The quadrilateral area co‐ordinates interpolation is used to establish the required expressions between the rigid‐body modes of normal nodal translations and the normal through thickness bending strains at mid‐side. In order to propose an attractive low‐cost shell element, the one‐point quadrature is achieved at the centre for the membrane strains, which are superposed to the bending strains in the centred co‐rotational local frame. The membrane hourglass control is obtained by the perturbation stabilization procedure. Free, simply supported and clamped edges are considered without introducing virtual nodes or elements. Several numerical examples with regular and irregular meshes are performed to show the convergence, accuracy and the reasonable little sensitivity to geometric distortion. Based on an updated Lagrangian formulation and Newton iterations, the large displacements of the pinched hemispherical shell show the effectiveness of the proposed simplified element (S4). Finally, the deep drawing of a square box including large plastic strains with contact and friction completes the ability of the rotation‐free quadrilateral element for sheet‐metal‐forming simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In order to develop robust finite element models for analysis of thin and moderately thick plates, a simple hybrid displacement function element method is presented. First, the variational functional of complementary energy for Mindlin–Reissner plates is modified to be expressed by a displacement function F, which can be used to derive displacement components satisfying all governing equations. Second, the assumed element resultant force fields, which can satisfy all related governing equations, are derived from the fundamental analytical solutions of F. Third, the displacements and shear strains along each element boundary are determined by the locking‐free formulae based on the Timoshenko's beam theory. Finally, by applying the principle of minimum complementary energy, the element stiffness matrix related to the conventional nodal displacement DOFs is obtained. Because the trial functions of the domain stress approximations a priori satisfy governing equations, this method is consistent with the hybrid‐Trefftz stress element method. As an example, a 4‐node, 12‐DOF quadrilateral plate bending element, HDF‐P4‐11 β, is formulated. Numerical benchmark examples have proved that the new model possesses excellent precision. It is also a shape‐free element that performs very well even when a severely distorted mesh containing concave quadrilateral and degenerated triangular elements is employed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
有限元新型自然坐标方法研究进展   总被引:1,自引:0,他引:1  
网格畸变敏感问题一直是当前有限元法难以解决的问题,而新型自然坐标方法的诞生可以在一定程度上对解决这个难题有所帮助。该文介绍了有限元新型自然坐标方法研究的新近进展。包括第一类四边形面积坐标及其应用(单元构造,解析刚度矩阵的建立,以及在几何非线性问题中的应用等);第二类四边形面积坐标及其应用;六面体体积坐标及其应用。数值算例表明:无论网格如何扭曲畸变,这些基于新型自然坐标方法的有限元模型仍然保持高精度,对网格畸变不敏感。这显示了新型自然坐标方法是构造高性能单元模型的有效工具。  相似文献   

11.
广义协调六结点平面曲边单元研究   总被引:1,自引:0,他引:1  
主要运用广义协调原理,针对计算平面曲边单元的有限元算法进行了研究,并且利用点、周混合协调条件构造了三种高性能六结点曲边单元。第一、二种单元在平面直角坐标内分别采用解析试函数和完全三次多项式构造,第三种单元在六结点等参单元Q6的基础上附加广义协调泡状位移而成。这三种单元均能通过强式分片试验,并且显示了良好的计算精度和抗畸变能力。  相似文献   

12.
We employ the linked interpolation concept to develop two higher‐order nine‐node quadrilateral plate finite elements with curved sides that pass the constant bending patch test for arbitrary node positions. The linked interpolation for the plate displacements is expanded with three bubble parameters to get polynomial completeness necessary to satisfy the patch test. In contrast to some other techniques, the elements developed in this way retain a symmetric stiffness matrix at a marginal computational expense at the element level. The new elements generated using this concept are tested on several examples with curved sides or some other kind of geometric distortion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A new improved discrete Kirchhoff quadrilateral element based on the third‐order zigzag theory is developed for the static analysis of composite and sandwich plates. The element has seven degrees of freedom per node, namely, the three displacements, two rotations and two transverse shear strain components at the mid‐surface. The usual requirement of C1 continuity of interpolation functions of the deflection in the third‐order zigzag theory is circumvented by employing the improved discrete Kirchhoff constraint technique. The element is free from the shear locking. The finite element formulation and the computer program are validated by comparing the results for simply supported plate with the analytical Navier solution of the zigzag theory. Comparison of the present results with those using other available elements based on zigzag theories for composite and sandwich plates establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The accuracy of the zigzag theory is assessed by comparing the finite element results of the square all‐round clamped composite plates with the converged three‐dimensional finite element solution obtained using ABAQUS. The comparisons also establish the superiority of the zigzag theory over the smeared third‐order theory having the same number of degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Two simple 4‐node 20‐DOF and 4‐node 24‐DOF displacement‐based quadrilateral elements named RDKQ‐L20 and RDKQ‐L24 are developed in this paper based on the first‐order shear deformation theory (FSDT) for linear analysis of thin to moderately thick laminates. The deflection and rotation functions of the element sides are obtained from Timoshenko's laminated composite beam functions. Linear displacement interpolation functions of the standard 4‐node quadrilateral isoparametric plane element and displacement functions of a quadrilateral plane element with drilling degrees of freedom are taken as in‐plane displacements of the proposed elements RDKQ‐L20 and RDKQ‐L24, respectively. Due to the application of Timoshenko's laminated composite beam functions, convergence can be ensured theoretically for very thin laminates. The elements are simple in formulation, and shear‐locking free for extremely thin laminates even with full integration. A hybrid‐enhanced procedure is employed to improve the accuracy of stress analysis, especially for transverse shear stresses. Numerical tests show that the new elements are convergent, not sensitive to mesh distortion, accurate and efficient for analysis of thin to moderately thick laminates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The unsymmetric finite element method is a promising technique to produce distortion‐immune finite elements. In this work, a simple but robust 4‐node 12‐DOF unsymmetric quadrilateral membrane element is formulated. The test function of this new element is determined by a concise isoparametric‐based displacement field that is enriched by the Allman‐type drilling degrees of freedom. Meanwhile, a rational stress field, instead of the displacement one in the original unsymmetric formulation, is directly adopted to be the element's trial function. This stress field is obtained based on the analytical solutions of the plane stress/strain problem and the quasi‐conforming technique. Thus, it can a priori satisfy related governing equations. Numerical tests show that the presented new unsymmetric element, named as US‐Q4θ, exhibits excellent capabilities in predicting results of both displacement and stress, in most cases, superior to other existing 4‐node element models. In particular, it can still work very well in severely distorted meshes even when the element shape deteriorates into concave quadrangle or degenerated triangle.  相似文献   

16.
含两个分量的四边形单元面积坐标理论   总被引:1,自引:0,他引:1  
为了便于构造抗畸变的四边形单元,建立了一套新的四边形单元面积坐标理论(QAC-2),并给出了相关的积分和微分公式。该坐标系作为自然坐标,具有明确的物理意义,且只含有两个相互独立的坐标分量,因此易于实现与直角坐标和等参坐标的沟通,便于理解和应用;两个坐标分量与直角坐标之间满足线性变换,在构造单元时易于选择完备的多项式序列,且多项式的完备次数不会随着网格的畸变而下降,因此可以保证单元的精度和抗畸变性能。  相似文献   

17.
Two refined quadrilateral flat shell elements named RSQ20 and RSQ24 are constructed in this paper based on the refined non‐conforming element method, and the elements can satisfy the displacement compatibility requirement at the interelement of the non‐planar elements by introducing the common displacements suggested by Chen and Cheung. A refined quadrilateral plate element RPQ4 and a plane quadrilateral isoparametric element are combined to obtain the refined quadrilateral flat shell element RSQ20, and a refined quadrilateral flat shell element RSQ24 is constructed on the basis of a RPQ4 element and a quadrilateral isoparametric element with drilling degrees of freedom. The numerical examples show that the present method can improve the accuracy of shell analysis and that the two new refined quadrilateral flat shell elements are efficient and accurate in the linear analysis of some shell structures. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
给出了一种适用于梯度复合材料热传导分析的梯度单元, 采用细观力学方法描述材料变化的热物理属性, 通过线性插值和高阶插值温度场分别给出了4节点和8节点梯度单元随空间位置变化的热传导刚度矩阵。推导了在温度梯度载荷和热流密度载荷作用下, 矩形梯度板的稳态温度场和热通量场精确解。基于该精确解对比了连续梯度模型和传统的离散梯度模型的热传导有限元计算结果, 验证了梯度单元的有效性, 并讨论了相关参数对梯度单元的影响。结果表明, 梯度单元和均匀单元得到的温度场基本一致; 当热载荷垂直于材料梯度方向时, 梯度单元能够给出更加精确的局部热通量场; 当热载荷平行于材料梯度方向时, 4节点梯度单元性能恶化, 8节点梯度单元和均匀单元的计算结果与精确解吻合很好。  相似文献   

19.
本文提出了三个带转角自由度单元,其中一个平面四边形单元,两个空间六面体单元。对平面单元每个结点有两个线位移自由度、一个转角自由度;对空间单元,每个结点有三个线位移自由度、三个转角自由度。这些单元列式简单,其中两个无多余零能模式,数值计算表明,它们的计算精度高。  相似文献   

20.
This paper presents a simplified co‐rotational formulation for quadrilateral shell elements inheriting the merit of element‐independence from the traditional co‐rotational approach in literature. With the objective of application to nonlinear analysis of civil engineering structures, the authors further simplify the formulation of the geometrical stiffness using the small strain assumption, which is valid in the co‐rotational approach, with the warping effects considered as eccentricities. Compared with the traditional element‐independent co‐rotational method, the projector is neglected both in the tangent stiffness matrix and in the internal force vector for simplicity in formulation. Meanwhile, a quadrilateral flat shell element allowing for drilling rotations is adopted and incorporated into this simplified co‐rotational algorithm for geometrically nonlinear analysis involved with large displacements and large rotations. Several benchmark problems are presented to confirm the efficiency and accuracy of the proposed method for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号