首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper analyses the performance of DS‐CDMA networks in the presence of call handoffs. We show that a handoff may violate the SINR requirements for other users, and thus cause an outage in the target cell. We propose to use the probability of such events as a possible metric for quality of service in networks with multiple traffic types, and derive the corresponding QoS parameters. A two‐level admission policy is defined: in tier 1 policy, the network capacity is calculated on the basis of the bound on outage probability. However, this policy does not suffice to prevent outage events upon handoffs for various traffic types, and henceforth, we propose an extension that reserves extra bandwidth for handoff calls, thus ensuring that handoff calls will not violate the outage probability bound. The overhead imposed by the extension is negligible, as the complete two‐tier admission control algorithm is executed only when a call is admitted into the network. Once admitted, calls can freely execute handoffs using the reserved bandwidth. The modified second‐tier bandwidth reservation policy is adaptive with respect to the traffic intensity and user's mobility and we show that it can provide satisfactory call (flow) quality during its lifetime. Analytical results for the QoS have been verified by the simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Many networks, such as non‐geostationary orbit satellite (NGOS) networks and networks providing multi‐priority service using advance reservations, have capacities which vary over time for some or all types of calls carried on these networks. For connection‐oriented networks, call admission control (CAC) policies which only use current capacity information may lead to excessive and intolerable dropping of admitted calls whenever the network capacity decreases. Thus novel CAC policies are required for these networks. We present the admission limit curve (ALC) and prove it is a constraint limiting the conditions under which any causal CAC policy may admit calls and still meet call dropping guarantees on an individual call basis. The ALC also leads to a lower bound on the call blocking performance achievable by any causal CAC policy which provides dropping guarantees to individual calls. Also, we introduce a new CAC policy which uses knowledge of future capacity changes to provide dropping guarantees on an individual call basis and which achieves blocking performance close to the lower bound. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Since a TCP sender cannot distinguish between packet losses arising from transmission errors from those due to congestion, TCP tends to perform poorly on wireless links that are prone to transmission errors. Several techniques have previously been proposed to improve TCP performance over wireless links. Existing schemes typically require an intermediate node (typically, a base station) to be TCP‐aware. For instance, the Snoop scheme requires the base station to interpret TCP headers and take appropriate action to help improve TCP performance. This paper proposes an alternative TCP‐unaware technique that attempts to mimic the behavior of the Snoop protocol. Performance evaluation shows that the proposed Delayed Dupacks scheme performs quite well. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Satellite communications can provide fourth generation (4G) networks with large‐scale coverage. However, their integration to 4G is challenging because satellite networks have not been designed with handover in mind. The setup of satellite links takes time, and so, handovers must be anticipated long before. This paper proposes a generic scheme based on the Institute of Electrical and Electronics Engineers 802.21 standard to optimize handover and resource management in hybrid satellite‐terrestrial networks. Our solution, namely optimized handover and resource management (OHRM), uses the terrestrial interface to prepare handover, which greatly speeds up the establishment of the satellite link. We propose two mechanisms to minimize the waste of bandwidth due to wrong handover predictions. First, we leverage the support of 802.21 in the terrestrial access network to shorten the path of the signaling messages towards the satellite resource manager. Second, we cancel the restoration of the satellite resources when the terrestrial link rolls back. We use OHRM to interconnect a digital video broadcasting and a wireless 4G terrestrial network. However for the simulation tool, we use a WiMAX as the terrestrial technology to illustrate the schemes. The simulation results show that OHRM minimizes the handover delay and the signaling overhead in the terrestrial and satellite networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Among the scheduling services, rtPS (real‐time polling service) is designated for real‐time applications. Among three packet delay intervals, performance effect on polling interval has been widely studied, but less on the intervals of scheduling and delivery. To evaluate the performance of delay‐sensitive rtPS applications, instead of using continuous queueing model, a discrete‐time GIG‐1 model, which considers intervals of polling, scheduling, and delivery, is proposed. By taking VoIP as a typical rtPS application, the transmission latency under different QoS settings, polling probability, and traffic load are presented. The latency is also compared among various codec schemes. The results indicate that when the codec rate is either fulfilled or dissatisfied by the promised bandwidth of service levels, the performance is highly dependent upon the polling probability, no matter what the traffic condition is. However, if the codec rate is in between the promised bandwidth of various service levels, the polling probability is a dominant factor in light traffic environment, while the settings on QoS parameters will strongly determine the performance in heavy traffic situation. In addition to the verification using simulation, the bandwidth utilization derived from the GIG‐1 model can be applied to improve the serving capacity of base stations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Following a recent upgrade, the Digital Video Broadcasting—Return Channel Satellite (DVB‐RCS) standard sets up to support terminal mobility. In this scenario, integration with terrestrial systems becomes a primary concern to ensure network connectivity in urban areas. This article proposes an integrated satellite–terrestrial architecture for the provision of broadband services onboard high‐speed trains, in which terrestrial cellular networks are seen as viable gap‐fillers for discontinuous satellite coverage. We derive an analytical model of the hybrid DVB‐RCS‐cellular system by exploiting analogies between the mobility pattern predictability of LEO constellations and that of high‐speed trains. Terminals whose QoS cannot be guaranteed by the satellite segment are proposed to temporarily divert the connections towards the terrestrial infrastructure, where available. Using an iterative approach based on the Erlang fixed‐point approximation, we show performance improvements with respect to stand‐alone satellite systems in terms of handover failure probability and overall resource utilization. The analytical model is also validated via our ns2‐based DVB‐RCS packet‐level simulator. Detailed modelling of synchronization and signalling mechanisms confirms the accuracy of the analytical results, and shows that topology and mobility information can contribute to refine radio resource utilization optimality when used jointly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Of significance in wireless multimedia sensor networks (WMSN) is the maintenance of media quality and the extension of route lifetime since media stream is more sensitive in quality requirement than data flow. In this paper, the problem of how to balance the needs on constraining end‐to‐end (e2e) quality and prolonging lifetime in an established route can be interpreted as a nonlinear optimization paradigm, which is then shown to be a max—min composite formulation when an e2e frame‐error probability is given. To solve this max—min problem, we propose two novel methods: route‐associated power management (RAPM) and link‐associated power management (LAPM). For computation‐restricted sensor nodes, the RAPM scheme with adding a simplification condition on power management can effectively reduce the power cost at computation and also rapidly determine optimum lifetime from numerous candidate routes. On the other hand, if computing power is not the major concern in a sink node, rather than using a heuristic method, we employ the LAPM algorithm to solve the lifetime maximization problem in a more accurate fashion. Solid theoretical analysis and simulation results are presented to validate our proposed schemes. Both analytical and simulation results demonstrate that the LAPM scheme is very comparable to the heuristic approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Because of the surging demands of multimedia services, quality‐of‐experience (QoE) is becoming an important metric to evaluate network quality from users' perspective. In this paper, resource optimisation to achieve optimal tradeoff between QoE and energy consumption in bidirectional orthogonal frequency‐division multiple‐access relaying networks is addressed so as to provide satisfactory multimedia delivery quality and support green communications. We first formulate a QoE‐energy efficiency tradeoff optimisation where QoE requirements and relaying traffic balance are considered and prove that QoE‐energy efficiency is quasiconcave on QoE, which suggests the existence of a unique global optimal tradeoff point. We then propose an optimisation framework to achieve the optimal tradeoff efficiently. With the framework, we develop resource allocation approaches for two specific relaying strategies, that is, two‐phase decode‐and‐forward relaying with dynamic XOR network coding and compute‐and‐forward relaying with physical network coding via structured codes. Numerical results validate theoretical findings and demonstrate the effectiveness of the proposed optimisation solution for achieving the tradeoff between QoE and energy consumption. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Protocols for sensor networks have traditionally been designed using the best effort delivery model. However, there are many specific applications that need reliable transmissions. In event‐driven wireless sensor networks, the occurrence of an event may generate a large amount of data in a very short time. Among them, some critical urgent information needs to be transmitted reliably in a timely manner. In this scenario, congestion is inevitable because of the constraints in available resources. How to control the congestion is very important for the reliable transmission of urgent information. To address this problem, we propose a queue‐based congestion detection and a multistage rate control mechanism. In our proposed mechanism, not only the current queue length but also the queue fluctuation are adopted as indications of congestion. Each sensor node evaluates its congestion level locally and determines its congestion state with a state machine. We design a multistage rate adjustment mechanism for nodes to adjust their rates depending on their congestion states. We also distinguish high‐priority critical traffic from low‐priority non‐critical traffic. Extensive simulation results confirm the superior performance of our proposed protocol with respect to throughput, loss probability, and delay.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In a non‐geostationary satellite constellation with inter satellite links (ISLs), there could be many shortest paths between two satellites in terms of hop count. An efficient routing algorithm should effectively use these paths in order to distribute traffic to ISLs in a balanced way and to improve the performance of the system. This paper presents and evaluates a novel priority‐based adaptive shortest path routing (PAR) scheme in order to achieve this goal. PAR sets the path towards the destination in a distributed manner, using a priority mechanism depending on the past utilization and buffering information of the ISLs. Moreover, to avoid unnecessary splitting of a flow and to achieve better utilization of ISLs, enhanced PAR (ePAR) scheme is proposed. This paper evaluates performance of the proposed techniques by employing an extensive set of simulations. Furthermore, since there are a number of ePAR parameters that should be adjusted depending on the network and traffic characteristics, a detailed analysis of ePAR scheme is provided to form a framework for setting the parameters. This paper also includes a method for adaptation of the proposed algorithms to minimum‐delay path routing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Until 1997, the power flux density (pfd) limits applicable to fixed satellite service (FSS) satellite transmitters to protect fixed service (FS) receivers operating in the same frequency band were those in Article 21 of the radio regulations. They were developed assuming that potentially interfering satellites in the FSS would only operate in the GSO. The need to revise these limits to allow for the protection of FS receivers from interference generated by non‐geostationary satellites has led to several studies, most of them based on the non‐realistic assumption that every visible satellite in a NGSO constellation produces the maximum allowed pfd level at the FS receive station location. To provide a quantitative indication of how pessimistic this assumption is, this paper considers a more realistic model in which the pfd entries reaching a given FS receiver location are characterized by statistically independent random variables. The probability density functions of these random variables depend on the operational characteristics of the NGSO network. The obtained results have also shown the need to consider some of the operational characteristics of NGSO satellite networks when evaluating the interference produced by their satellites. If these operational characteristics are not taken into account in the calculations, higher values of interference, that do not reflect the real interference environment, are obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Multiple gateways are required in large satellite constellation networks (LSCNs) with inter‐satellite links (ISLs), and their placement may greatly affect the system performance. Gateway placement can be optimized to achieve better network performance under the non‐uniform ground demand distribution. This paper formulates a gateway placement optimization model for LSCN with ISLs, aiming at achieving an optimal overall performance including delay, traffic peak, and load balance. The constraints of potential gateway location, gateway‐satellite connectivity, and max hop‐count are considered. A genetic algorithm (GA)‐based method is proposed to solve the integer optimization problem with the help of quasi‐evenly distributed reference layout. A Starlink‐like constellation with ISLs is adopted in the simulation. The simulation results show that the optimized layout has better performance than the reference layout. Additionally, the locations with high user demand or at the middle of ocean are preferred by gateways. The network performance is jointly influenced by gateway placement, demand distribution, constellation configuration, node, and link capacities. The abnormally high ISL hop‐count is found in the south Indian Ocean, which is caused by constellation and ISL configuration.  相似文献   

13.
This paper develops a mathematical model to describe the statistical behavior of the interference produced by VSAT/MF‐TDMA networks. The model is used to assess the interference produced by the uplinks of a VSAT/MF‐TDMA network into links of a network that uses a neighboring satellite. In the proposed model, analytical expressions were developed to account for the effects of variations in transmitting powers, antenna sizes, and transmitting antenna pointing errors. The earth station locations are modeled by a 2‐dimensional Poisson point process. The model is general enough to accommodate other types of point processes and can be applied to situations involving service areas containing multiple types of earth station geographical distribution. Numerical results obtained with the proposed model are compared with those based on the actual parameter values (eg, earth station locations, antenna sizes, and transmitting powers), which were provided by a Brazilian satellite operator.  相似文献   

14.
In this paper, we study two dynamic frequency hopping (DFH)–based interference mitigation approaches for satellite communications. These techniques exploit the sensing capabilities of a cognitive radio to predict future interference on the upcoming frequency hops. We consider a topology where multiple low Earth orbit satellites transmit packets to a common geostationary equatorial orbit satellite. The FH sequence of each low Earth orbit–geostationary equatorial orbit link is adjusted according to the outcome of out‐of‐band proactive sensing scheme, performed by a cognitive radio module in the geostationary equatorial orbit satellite. On the basis of sensing results, new frequency assignments are made for the upcoming slots, taking into account the transmit powers, achievable rates, and overhead of modifying the FH sequences. In addition, we ensure that all satellite links are assigned channels such that their minimum signal‐to‐interference‐plus‐noise ratio requirements are met, if such an assignment is possible. We formulate two multi‐objective optimization problems: DFH‐Power and DFH‐Rate. Discrete‐time Markov chain analysis is used to predict future channel conditions, where the number of states are inferred using k‐means clustering, and the state transition probabilities are computed using maximum likelihood estimation. Finally, simulation results are presented to evaluate the effects of different system parameters on the performance of the proposed designs.  相似文献   

15.
Sensitivity, repeatability, and discernment are three major issues in any classification problem. In this study, an electronic nose with an array of 32 sensors was used to classify a range of odorous substances. The collective time response of the sensor array was first partitioned into four time segments, using four smooth time-windowing functions. The dimension of the data associated with each time segment was then reduced by applying the Karhunen-Loéve (truncated) expansion (KLE). An ensemble of the reduced data patterns was then used to train a neural network (NN) using the Levenberg-Marquardt (LM) learning method. A genetic algorithm (GA)-based evolutionary computation method was used to devise the appropriate NN training parameters, as well as the effective database partitions/features. Finally, it was shown that a GA-supervised NN system (GANN) outperforms the NN-only classifier, for the classes of the odorants investigated in this study (fragrances, hog farm air, and soft beverages).  相似文献   

16.
This paper addresses the performance evaluation of adaptive routing algorithms in non‐geostationary packet‐switched satellite communication systems. The dynamic topology of satellite networks and variable traffic load in satellite coverage areas, due to the motion of satellites in their orbit planes, pose stringent requirements to routing algorithms. We have limited the scope of our interest to routing in the intersatellite link (ISL) segment. In order to analyse the applicability of different routing algorithms used in terrestrial networks, and to evaluate the performance of new algorithms designed for satellite networks, we have built a simulation model of a satellite communication system with intersatellite links. In the paper, we present simulation results considering a network‐uniform source/destination distribution model and a uniform source–destination traffic flow, thus showing the inherent routing characteristics of a selected Celestri‐like LEO satellite constellation. The updates of the routing tables are centrally calculated according to the Dijkstra shortest path algorithm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates secure transmission of an integrated satellite‐aerial‐terrestrial network (ISATN), where multiple eavesdroppers (Eves) attempt to overhear the satellite signals cooperatively. The ISATN adopts an unmanned aerial vehicle (UAV) equipped with multiple antennas as a relay with threshold‐based decode‐and‐forward (DF) protocol. By assuming that perfect instantaneous channel state information (CSI) of the satellite‐UAV link and the statistical CSI of the UAV‐user link are available, we first propose a beamforming (BF) scheme for maximizing the achievable secrecy rate (ASR) of the considered network. Then, we derive the analytical expressions of the secrecy outage probability (SOP) and ergodic secrecy rate (ESR) of the considered system with the BF strategy under an assumption that the satellite‐UAV link undergoes the shadowed‐Rician fading, while the UAV‐user link experiences the correlated Rayleigh fading. Finally, numerical results are given to demonstrate the superiority of the proposed BF scheme against zero forcing (ZF) and maximal ratio transmission (MRT) schemes and the validity of the secrecy performance analysis.  相似文献   

18.
In this article, performance of delay‐sensitive traffic in multi‐layered satellite Internet Protocol (IP) networks with on‐board processing (OBP) capability is investigated. With OBP, a satellite can process the received data, and according to the nature of application, it can decide on the transmission properties. First, we present a concise overview of relevant aspects of satellite networks to delay‐sensitive traffic and routing. Then, in order to improve the system performance for delay‐sensitive traffic, specifically Voice over Internet Protocol (VoIP), a novel adaptive routing mechanism in two‐layered satellite network considering the network's real‐time information is introduced and evaluated. Adaptive Routing Protocol for Quality of Service (ARPQ) utilizes OBP and avoids congestion by distributing traffic load between medium‐Earth orbit and low‐Earth orbit layers. We utilize a prioritized queueing policy to satisfy quality‐of‐service (QoS) requirements of delay‐sensitive applications while evading non‐real‐time traffic suffer low performance level. The simulation results verify that multi‐layered satellite networks with OBP capabilities and QoS mechanisms are essential for feasibility of packet‐based high‐quality delay‐sensitive services which are expected to be the vital components of next‐generation communications networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Spatial audio coding (SAC) is an extremely high compact representation of encoded multi‐channel audio material. This paper suggests a multi‐channel audio service in the terrestrial digital multimedia broadcasting (T‐DMB) system using a novel SAC tool, which is called a virtual source location information (VSLI)‐based SAC tool. Intensive experiments are presented to evaluate the validity of the proposed VSLI‐based SAC tool, and prototypical systems are also presented to demonstrate the reliability of the proposed multi‐channel T‐DMB system in real applications.  相似文献   

20.
In this work, the current power‐flux density limits in Article 21 of the ITU‐R Radio Regulations for non‐geostationary satellite orbit (GSO) systems operating in the 3.7‐4.2 GHz band are analyzed. These limits aim the protection of fixed service receivers, operating in the same frequency band, from the interference produced by non‐GSO satellite systems. The analysis was motivated by Resolution 157 of the World Radiocommunication Conference 2015, that recognized the need for a revision of Article 21 with a view to enabling non‐GSO systems to operate in these fixed‐satellite service frequency bands while ensuring that existing primary services are protected. In the analysis, 5 different circular Walker Delta type satellite constellation structures, adequately chosen, are considered, and the results show that the current power‐flux density (pfd) limits may impose undue constraints to non‐GSO systems operating in this band. Therefore, a methodology to investigate a more adequate pfd limiting mask is presented and used to generate an alternative mask. An evaluation of the proposed pfd mask shows that it does not impose unnecessary constraints to the non‐GSO satellite systems. This, along with other facts, indicates that the proposed pfd limits are, indeed, much more adequate than the current ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号