首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various (low‐density polyethylene)/poly(ethylene‐co‐vinyl acetate) (LDPE/EVA) nanocomposites containing organoclay were prepared by one‐ and two‐step procedures through melt blending. The resultant nanocomposites were then processed via the film blowing method. From the morphological point of view, X‐ray diffraction and optical microscopy studies revealed that although a prevalent intercalated morphology was evident in the absence of EVA, a remarkable increase of organoclay interlayer spacing occurred in the EVA‐containing systems. The advantages of the addition of EVA to the LDPE/organoclay nanocomposites were confirmed in terms of oxygen barrier properties. In other words, the oxygen transmission rates of the LDPE/EVA/organoclay systems were significantly lower than that of the LDPE/organoclay sample. The LDPE/EVA/organoclay films had better mechanical properties than their counterparts lacking the EVA, a result which could be attributed to the improvement of the organoclay reinforcement efficiency in the presence of EVA. Differential scanning calorimetry and thermogravimetric analysis experiments were performed to follow the effects of the EVA and/or organoclay on the thermal properties of LDPE. Finally, the films produced from the two‐step‐procedure compound showed enhanced oxygen barrier properties and mechanical behavior as compared to the properties of the films produced via the one‐step procedure. J. VINYL ADDIT. TECHNOL., 19:132–139, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
Poly(ethylene‐vinyl acetate) (EVA) copolymer was melt grafted with maleic anhydride (MAH) in a twin screw extruder in the presence of peroxide. It is confirmed that MAH has been melt grafted on the backbone of EVA by FTIR using the method of hydrolysis. The NMR analysis suggests that the grafting reaction occurs on the tertiary carbon of main chain of EVA other than the methyl moiety of vinyl acetate (VA) group. The incorporation of VA groups onto the matrix shows a competitive effect on the grafting. The existence of VA groups promotes the extent of MAH graft onto EVA; nevertheless, it also weakens the crystallizability of main chain. When the content of peroxide initiator is 0.1 wt % based on the polymer matrix, the grafting degree increases with increasing the concentration of monomer. When the peroxide content is higher than 0.1 wt %, side reactions such as crosslinking or disproportionation will be introduced into this system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 841–846, 2006  相似文献   

3.
Melt grafting of acrylic acid (AA) and butyl acrylate (BA) (equal molar ratios) onto low‐density polyethylene (LDPE) was carried out in Haake internal mixter by free radical grafting copolymerization. The graft degree of AA and BA in the grafted LDPE (LDPE‐g‐(AA+BA)) was determined by FTIR. The influences of initiator on the graft degree of AA and BA, melt flow rate (MFR), and gel content were investigated, and the optimum conditions were obtained. The successive self‐nucleation/annealing (SSA) thermal fraction method was used to characterize the molecular structure and polydispersity of LDPE‐g‐(AA+BA) with various graft degrees. The effects of thermal fraction parameters on fraction of LDPE‐g‐(AA+BA) were investigated. On the basis of the results of SSA, the grafting reaction mechanism of AA and BA onto LDPE was proposed, i.e., grafting reaction preferentially occurred on the tertiary carbons of LDPE. The grafted LDPE possessed suitable reactivity and rheological property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Radiation‐induced graft copolymerization of α‐methyl styrene (AMS), butyl acrylate (BA) monomers, and their mixture was investigated on poly(etheretherketone) films. The graft polymerization was carried out using ethyl methyl ketone as the medium for the copolymerization and the maximum degree of grafting of 27% was achieved. It was observed that the grafting is significantly influenced by the reaction conditions, such as reaction time, preirrradiation dose, monomer concentration, monomer ratio, and the reaction temperature. The degree of grafting increases as the monomer concentration increases up to 30%, beyond which a decrease in the grafting was observed. The degree of grafting showed a maximum at 40% BA content in the monomer mixture. The temperature dependence of the grafting process shows decreasing grafting with the increase in the reaction temperature. The presence of AMS and BA grafts in the film was confirmed by FTIR spectra. The relative change in the PBA/PAMS fraction with respect to the reaction temperature has been found in this study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
A graft copolymer of oleic acid (OA) onto low‐density polyethylene (LDPE) was prepared using dicumyl peroxide (DCP) as an initiator in the molten state. The grafting was carried out in a Haake rheometer. The effects of the reaction time and the amount of DCP and the monomer on the percentage of grafting were studied. The rheological behavior and the melt‐flow rate of the graft copolymer (LDPE‐g‐OA) were also investigated. FTIR spectroscopy and a mass spectrum were used to characterize the structure of LDPE‐g‐OA. The experimental results showed that when the OA amount was 10 wt % and the DCP amount was 0.4 wt % based on the LDPE the percentage of grafting of LDPE‐g‐OA, prepared by maintaining the temperature at 170°C and the roller speed at 80 rpm, was about 6 wt %. It was found that both LDPE and LDPE‐g‐OA were pseudoplastic fluids. OA was grafted onto LDPE in the form of a monomer and a dimer. The grafted LDPE is expected to act as a compatibilizer between starch and polyethylene. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3299–3304, 2003  相似文献   

6.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) using potassium diperiodatoargentate(III) [Ag(III)]–PVA redox system as initiator was studied in an alkaline medium. Some structural features and properties of the graft copolymer were confirmed by Fourier‐transfer infrared spectroscopy, scanning electron microscope, X‐ray diffraction and thermogravimetric analysis. The grafting parameters were determined as a function of concentrations of monomer, initiator, macromolecular backbone (X?n = 1750, M? = 80 000 g mol?1), reaction temperature and reaction time. A mechanism based on two single‐electron transfer steps is proposed to explain the formation of radicals and the initiation profile. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate and n‐butyl acrylate, were also used to produce graft copolymerizations. It has been confirmed that grafting occurred to some degree. Thermogravimetric analysis was performed in a study of the moisture resistance of the graft copolymer. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
We improved photoinduced graft polymerization by absorbing the monomer solution onto the substrate (Ab‐type) instead of immersing the substrate in the monomer solution (Im‐type) before photoirradiation to yield a more practical and effective grafting system. With this system, acrylic acid (AA) was effectively grafted onto polypropylene (PP) nonwoven fabric. The maximum degree of grafting obtainable was restricted by the amount of monomer preabsorbed onto the PP fabric. However, we effectively enhanced the degree of grafting by increasing the monomer concentration, adding trimethylolpropane triacrylate (TMPTA) to the monomer solution, and repeating the photoirradiation with supplementation of the monomer solution. The net availability of the monomer for graft polymerization was 50% or greater; this increased to 90% or greater with the addition of TMPTA and was much higher than for conventional Im‐type photografting (≤13%). Fourier transform infrared spectra, scanning electron microscopy morphology observations, and the adsorption–regeneration properties confirmed that the PP‐g‐AA fabric prepared by the improved Ab‐type photografting method had comparable qualities to those of fabric prepared by conventional Im‐type photografting. Thus, the improved Ab‐type photografting system provides potential for the preparation of graft adsorbents on a large scale at a competitive cost with a continuous reactor, such as a conveyer belt system, instead of a batch reactor. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

9.
接枝型环氧-苯丙树脂水分散液的合成与性能研究   总被引:3,自引:0,他引:3  
张凯  张力 《应用化工》2005,34(12):741-744
通过化学接枝法合成了稳定的水性环氧树脂。研究了接枝温度、引发剂浓度对单体接枝率的影响;亲水单体含量、中和度对接枝共聚物水分散稳定性的影响;考察了功能硅单体(A-1757)的引入对接枝共聚物膜的耐水、耐介质性的影响。结果表明,接枝温度为112~115℃,亲水单体含量为22%(占总单体质量分数),中和度为110%时,单体接枝率可达84.09%,所得改性接枝共聚物水分散稳定性最好,且具有较小的粒径。功能硅单体的引入能大大提高耐水、耐介质性。  相似文献   

10.
The aim of this study was to prepare poly (ethylene‐co‐vinyl acetate) (EVA)/ low density polyethylene (LDPE)/magnesium hydroxide (MH) composites applicable in cable industry with required flame retardancy. For this reason, two types of organo‐modified montmorillonites (OMMT) with different surface polarites (Cloisite 15A and Cloisite 30B) at various concentrations, and also combination of these two OMMTs with overall loadings of 2 wt % and 5 wt % were used. The samples were compounded using a twin screw extruder with total (MH + OMMT) feeding of 55 wt % and 60 wt %. Limiting oxygen index (LOI) of the samples containing 2 wt % of OMMTs increased about 16% and dripping was suppressed according to vertical burning test (UL‐94V). Thermogravimetric results of EVA/LDPE/MH samples containing OMMT showed that the beginning of second step degradation was shifted about 50°C to higher temperatures. The composite tensile strength results showed enhancement by incorporating some amount of nanoclays with EVA/LDPE/MH composites. Scanning electron microscopy images confirmed that MH particles had better wetting by EVA matrix in presence of nanoclays. Oxidative induction time of the EVA/LDPE/MH/OMMT nanocomposites was 140 min, which was more than that of the samples without OMMT (20 min). Employing the equal weight ratios of the two OMMTs demonstrated a synergistic effect on flame retardancy of the samples according to the both tests results (LOI, UL‐94V). X‐ray diffraction analysis of the samples confirmed the intercalation/semiexfoliation structure of nanosilicate layers in the bulk of EVA/LDPE matrix. This led to longer elongation at break and thermal stability of Cloisite 15A based nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40452.  相似文献   

11.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

12.
The effect of trimethylolpropane triacrylate (TMPTA) monomer on the tensile properties, dynamic mechanical properties, and morphology of irradiated epoxidized natural rubber (ENR‐50), ethylene‐(vinyl acetate) copolymer (EVA), and an ENR‐50/EVA blend was investigated. The ENR‐50, EVA, and ENR‐50/EVA blend were irradiated by using a 3.0‐MeV electron‐beam apparatus at doses ranging from 20 to 100 kGy. The improvement of tensile properties and morphology with irradiation indicated the advantage of having irradiation‐induced crosslinks in these materials. Observation of the properties studied confirmed that TMPTA was efficient in enhancing the irradiation‐induced crosslinking of ENR‐50, EVA, and the ENR‐50/EVA blend. Addition of TMPTA improved the adhesion between the ENR‐50/EVA blend phases by forcing grafting and crosslinking at a higher irradiation dose (100 kGy). J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers.  相似文献   

13.
Surface modification of argon plasma–pretreated low‐density polyethylene (LDPE) film via UV‐induced graft copolymerization with a fluorescent monomer, (pyrenyl)methyl methacrylate (Py)MMA, was carried out. The chemical composition and morphology of the (Py)MMA‐graft‐copolymerized LDPE [(Py)MMA‐g‐LDPE] surfaces were characterized, respectively, by X‐ray photoelectron spectroscopy (XPS) and by atomic force microscopy (AFM). The concentration of the surface‐grafted (Py)MMA polymer increased with Ar plasma pretreatment time and UV graft copolymerization time. The photophysical properties of the (Py)MMA‐g‐LDPE surfaces were measured by fluorescence spectroscopy. After graft copolymerization with the fluorescent monomer, the surface of the LDPE film was found to have incorporated new and unique functionalities. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1526–1534, 2001  相似文献   

14.
The basic method for synthesizing syndiotactic polystyrene‐g‐polybutadiene graft copolymers was investigated. First, the syndiotactic polystyrene copolymer, poly(styrene‐co‐4‐methylstyrene), was prepared by the copolymerization of styrene and 4‐methylstyrene monomer with a trichloro(pentamethyl cyclopentadienyl) titanium(IV)/modified methylaluminoxane system as a metallocene catalyst at 50°C. Then, the polymerization proceeded in an argon atmosphere at the ambient pressure, and after purification by extraction, the copolymer structure was confirmed with 1H‐NMR. Lastly, the copolymer was grafted with polybutadiene (a ready‐made commercialized unsaturated elastomer) by anionic grafting reactions with a metallation reagent. In this step, poly(styrene‐co‐4‐methylstyrene) was deprotonated at the methyl group of 4‐methylstyrene by butyl lithium and further reacted with polybutadiene to graft polybutadiene onto the deprotonated methyl of the poly(styrene‐co‐4‐methylstyrene) backbone. After purification of the graft copolymer by Soxhlet extraction, the grafting reaction copolymer structure was confirmed with 1H‐NMR. These graft copolymers showed high melting temperatures (240–250°C) and were different from normal anionic styrene–butadiene copolymers because of the presence of crystalline syndiotactic polystyrene segments. Usually, highly syndiotactic polystyrene has a glass‐transition temperature of 100°C and behaves like a glassy polymer (possessing brittle mechanical properties) at room temperature. Thus, the graft copolymer can be used as a compatibilizer in syndiotactic polystyrene blends to modify the mechanical properties to compensate for the glassy properties of pure syndiotactic polystyrene at room temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
本文研究在水介质中,以过氧化苯甲酰为引发剂,LDPE与MMA的技枝共聚反应,并用它制备了与高岭土的共混物。探讨了单体用量,反应时间对接枝度的影响规律,用红外光谱验证了接枝物的存在,还探讨了接枝度及高岭土填充量对拉伸强度的影响。结果表明在接枝度为15%,高岭土填充量为10%时,体系具有较高的拉伸强度。  相似文献   

16.
Conventional approaches to toughen thermosets are: (1) the polymerization‐induced phase separation of a rubber or a thermoplastic, or (2) the use of a dispersion of preformed particles in the initial formulation. In the present study it is shown that it is possible to combine both techniques by using graft copolymers with one of the blocks being initially immiscible and the other that phase separates during polymerization. This is illustrated by the use of poly(ethylene‐co‐vinyl acetate)‐graft‐poly(methyl methacrylate) (EVA‐graft‐PMMA) as modifier of an epoxy resin. EVA is initially immiscible and PMMA phase separates during polymerization. Blends of an epoxy monomer based on diglycidylether of bisphenol A (DGEBA, 100 parts by weight), piperidine (5 parts by weight), and PMMA (5 parts by weight), showed the typical polymerization‐induced phase separation of PMMA‐rich domains before gelation of the epoxy network. Replacing PMMA by EVA‐graft‐PMMA (5 parts by weight), yielded stable dispersions of EVA blocks, favoured by the initial solubility of PMMA blocks. Phase separation of PMMA blocks in the course of polymerization led to a dispersion of in situ generated biphasic particles (plausibly composed of EVA cores surrounded by PMMA shells), with average diameters varying from 0.3 to 0.6 µm with the cure temperature. This procedure may be used to generate stable dispersions of biphasic particles for toughening purposes. © 2002 Society of Chemical Industry  相似文献   

17.
The article presents the results of experimental investigation on three‐body abrasive wear behavior of nanoclay‐filled EVA/LDPE (NC‐EVA/LDPE) composites. NC‐EVA/LDPE composites with and without compatibilizer were prepared by Brabender Co‐Twin extruder (Make: CMEI, Model: 16CME, SPL) and poly(ethylene‐co‐glycidyl methacrylate) was used as the compatibilizer. The mechanical properties were evaluated using Universal testing machine. In three‐body wear tests, silica sand particles of size 200–250 μm were used as dry and loose abrasives. Three‐body abrasive wear studies were carried out using dry sand/rubber wheel abrasion test rig. The effect of abrading distance on the abrasive wear behavior of neat EVA, EVA/LDPE, and NC‐EVA/LDPE composites was reported. The results showed that the wear volume loss is increased with increase in abrading distance and the specific wear rate decreased with increase in abrading distance. However, the presence of nanoclay filler in EVA/LDPE composite showed a promising trend. Abrasive wear volume of the composites was correlated with mechanical properties such as hardness, tensile strength, and percentage elongation. However, higher weight percentage of LDPE in EVA increased the wear rate. The results indicate that NC‐EVA/LDPE with compatibilizer composite exhibits good abrasive wear resistance compared with NC‐EVA/LDPE without compatibilizer. Attempts to explain these differing trends are made in this work by analyzing the features observed on the worn surface samples by employing scanning electron microscopy (SEM). POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
UV‐radiation‐induced graft copolymerization of methacrylic acid and acrylic acid onto jute fibre was carried out using a preirradiation method with 1‐hydroxycyclohexyl‐phenylketone as a photoinitiator. 2‐methyl‐2‐propene 1‐sulfonic acid, sodium salt was incorporated into the grafting solution in suppressing the homopolymer/gel formation and facilitating graft copolymerization. In comparison, results showed that the type of monomer significantly influence on grafting. The results of the characterisation showed that the graft weight and the type of monomer have significant influence on the mechanical and water absorption properties in the case of grafted samples. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
A series of acrylic monomers–starch graft copolymers were prepared by ceric ion initiation method by varying the amount of monomers. These graft copolymers were characterized by IR and 13C‐NMR spectroscopy. It was seen that as the concentration of monomer [acrylic acid (AA), methacrylic acid (MA), and methyl methacrylate (MMA)] increased the percent add‐on increased in all the graft copolymers, whereas grafting efficiency increased initially but showed a slight decrease with further increase in the monomer concentration (except for MMA). The release rate of paracetamol as a model drug from graft copolymers as well as their blends was studied at two different pH, 1.2 and 7.4, spectrophotometrically. The release of paracetamol in phosphate buffer solution at pH 1.2 was insignificant in the first 3 h for St‐g‐PAA‐ and St‐g‐PMA‐graft copolymers, which was attributed to the matrix compaction and stabilization through hydrogen bonding at lower pH. At pH 7.4, the release rate was seen to decrease with increase in add‐on. The tablet containing poly(methyl methacrylate) (PMMA) did not disintegrate at the end of 30–32 h, which may be attributed to the hydrophobic nature of PMMA. These results indicate that the graft copolymers may be useful to overcome the harsh environment of the stomach and can be used as excipients in colon‐targeting matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A new antithrombosis dialytic membrane with a hydrophilic–hydrophobic microphase structure was prepared by preirradiation grafting of β‐hydroxyethyl methacrylate (HEMA) and styrene (St) onto ethylene–vinyl acetate (EVA). The influence of some effects, such as preirradiation dose, dose rate, grafting reaction temperature, reaction time, and monomer component, on the degree of grafting was determined, and the properties of the grafted films were investigated. Compared with the conventional EVA‐grafted hydrophilic monomer, the EVA films grafted with HEMA and St have superior antithrombogenicity; the antithrombogenicity and permeability of EVA‐g‐(HEMA‐co‐St) were 30 and 20 times higher than those of the ungrafted films, respectively, when the volume ratio (HEMA versus St) was about 7:3. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1321–1327, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号