首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Electrical and thermal conductive polymers have aroused extensive interest in research recently due to their hi-tech applications in the fields of novel electronics. A novel electrical and thermal conductive nanocomposite (MWCNTs@PU/TPU) made with multiwall carbon nanotubes (MWNTs) and thermoplastic polyurethanes (TPU) by using azide polyurethane (PU) as interfacial compatibilizer. The MWNTs could form well-developed electrical and thermal conductive networks in the TPU matrix. The developed nanocomposite inherited advantageous properties from its constituents, namely the high conductivity and diathermancy from MWNTs, and the high mechanical properties from the TPU. Conductivity tests showed that, compared with neat MWCNTs/TPU, the electrical conductivity of MWCNTs@PU/TPU was significantly enhanced (up to 3.4 × 10−6 S/cm), with incorporating only 3.0 wt% MWCNTs@PU. And most importantly, the thermal conductivity was greatly improved by about 46.4% when the MWCNTs@PU loading was 6.0 wt%.  相似文献   

2.
Waterborne polyurethane/polydopamine (PDA) functional reduced graphene oxide (WPU/PDRGO) nanocomposites were prepared by in situ emulsification method. The presence of a PDA layer and the partial reduction of GO by PDA were confirmed by FTIR, XRD, Raman spectra, and TGA. It was found that the interfacial PDA layers facilitated the dispersion of the PDRGO sheets in the WPU matrix and enhanced mechanical properties of the WPU matrix. The resulting WPU/PDRGO nanocomposite coatings show excellent electrical conductivity (9.9?×?10?6–1.1?×?10?4 S cm?1) corresponding to a PDRGO content of 1–16 wt%. The obtained waterborne polyurethane/graphene nanocomposite dispersions are promising for anticorrosion, antistatic, conductive, and electromagnetic interference shielding coatings.  相似文献   

3.
This article presents the effect of exfoliation, dispersion, and electrical conductivity of graphene sheets onto the electrical, electromagnetic interference (EMI) shielding, and gas barrier properties of thermoplastic polyurethane (TPU) based nanocomposite films. The chemically reduced graphene (CRG) and thermally reduced/annealed graphene (TRG) having Brunauer–Emmett–Teller surface areas of 18.2 and 159.6 m2/g, respectively, when solution blended with TPU matrix using N,N-dimethylformamide as a solvent. Graphene sheets based TPU nanocomposites have been evaluated and compared for EMI shielding in Ku band, electrical conductivity, and gas barrier property. TRG/TPU nanocomposite films showed excellent gas barrier against N2 gas as compared to CRG/TPU. The EMI shielding effectiveness for neat CRG and TRG graphene sheets is found to be −80, −45 dB, respectively, at 2 mm thickness. The EMI shielding data revealed that TRG/TPU nanocomposites showed better shielding at lower concentration (10 wt %), while CRG displayed better attenuation at higher concentrations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47666.  相似文献   

4.
简要介绍了本征型和填充型聚合物复合材料的导热机理,从氧化铝、碳纳米管和石墨烯三种导热填料方面,分别概述了这三种填料填充热塑性聚氨酯(TPU)基导热纳米复合材料的制备技术、导热性能及导热机理研究进展情况,论述了每种复合材料在不同填料改性、不同制备技术以及不同填料复合填充条件下带来的导热效率变化,最后对TPU基导热纳米复合材料研究趋势进行了展望。  相似文献   

5.
ABSTRACT

Flexible conductive polymer composites with good mechanical property play an important role in the modern electronic industry. In this study, aromatic poly(amide-imide) (PAI) and thermoplastic polyurethane (TPU), functionalized multi-wall carbon nanotube (FMWCNT) and reduced graphene oxide (RGO), were, respectively, used as polymer matrix and conductive filler to fabricate conductive polymer composites. Combing the advantages of PAI (high strength) and TPU (good elasticity), PAI-TPU/FMWCNT-RGO polymer composites exhibited a high tensile strength of 58.8 MPa and good elongation at break of 255%. On the other hand, the hybrid conductive filler of FMWCNT-RGO possessed a 3D structure, which is beneficial for improving conductive property, and thus a relative high conductivity of 35.9 S m?1 was achieved. The enhanced mechanical and conductive properties are mainly ascribed from the good compatibility between the polymer matrix and conductive fillers, which promotes the good dispersion of conductive filler into the polymer matrixes.  相似文献   

6.
Thermoplastic polyurethane (TPU)/multi‐walled carbon nanotubes (CNT) nanocomposites were prepared by twin‐screw extrusion and micro injection molding. The electrical conductivity of micro injection molded polymer nanocomposites exhibits a low value and uneven distribution in the micromolded samples. Real‐time tracing of electrical conductivity was conducted to investigate the post thermal treatment on the electrical conductivity of microinjection molded composites. The results show that postmolding thermal treatment leads to a significant increase in the electrical conductivity by over three orders of magnitude for 5 wt % CNT‐filled TPU composites. In‐situ Transmission electron microscopy confirms the conductive CNT network does not change at the micron/sub‐micron scale during thermal treatment. TEM image analysis by a statistical method was used to determine the spatial distribution of CNT in the sample and showed that the average distance between adjacent CNT reduced slightly at the nanometer scale after postmolding thermal treatment. A new conductive mechanism is proposed to explain the enhancement of electrical conductivity after thermal treatment, i.e. micro‐contact reconstruction of adjacent CNT in the polymer matrix through annealing‐induced relaxation of interfacial residual stress and strain. Raman spectra and small angle X‐ray scattering curve of annealed samples provide supporting evidence for the proposed new conductive mechanism. The electron tunneling model was used to understand the effect of inter‐particle distance on the conductivity of polymer composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42416.  相似文献   

7.
The thermoplastic polyurethane/multiwalled carbon nanotube (TPU/CNT) nanocomposites with high conductivity and low percolation threshold value were prepared by melting blending and annealing treatment. The effect of annealing process on the microphase structure and the properties of TPU/CNT nanocomposites was studied. It has been shown that CNT flocculation can occur in TPU/CNT nanocomposites during the annealing process. At a critical CNT content, which defined the percolation threshold, CNTs could form conductivity network. The conductive percolation threshold value of TPU/CNT nanocomposites was decreased from 10 to 4% after annealing process, and the conductivity of TPU/CNT nanocomposites with 10 vol % of CNT could reach 1.1 S/m after an annealing time of 1 h. The significant enhancement of electrical conductivity was influenced by the annealing time and the content of CNTs. The formation of CNT networks was also verified by dynamic viscoelastic characterization. The results of X‐ray diffraction and differential scanning calorimetry indicated that annealing process reinforced the microphase separation of the nanocomposites. Mechanical properties test showed that the annealing treatment was in favor of improving the mechanical properties; however, further increase in the annealing time has negative effect on the mechanical properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This study describes a simple and effective method of synthesis of a polyurethane/graphene nanocomposite. Cationic waterborne polyurethane (CWPU) was used as the polymer matrix, and graphene oxide (GO) as a starting nanofiller. The CWPU/GO nanocomposite was prepared by first mixing a CWPU emulsion with a GO colloidal dispersion. The positively charged CWPU latex particles were assembled on the surfaces of the negatively charged GO nanoplatelets through electrostatic interactions. Then, the CWPU/chemically reduced GO (RGO) was obtained by treating the CWPU/GO with hydrazine hydrate in DMF. The results of X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Raman analysis showed that the RGO nanoplatelets were well dispersed and exfoliated in the CWPU matrix. The electrical conductivity of the CWPU/RGO nanocomposite could reach 0.28 S m?1, and the thermal conductivity was as high as 1.71 W m?1 K?1. The oxygen transmission rate (OTR) of the CWPU/RGO‐coated PET film was significantly decreased to 0.6 cmm?2 day?1, indicating a high oxygen barrier property. This remarkable improvement in the electrical and thermal conductivity and barrier property of the CWPU/RGO nanocomposite is attributed to the electrostatic interactions and the molecular‐level dispersion of RGO nanoplatelets in the CWPU matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43117.  相似文献   

9.
A co‐coagulation method combined with hot pressing technique is successfully applied to fabricate thermoplastic polyurethane (TPU) nanocomposites with different contents of carbon nanotubes (CNTs). Obviously, the mechanical and thermal properties of the nanocomposites are improved with increasing the CNT content. In addition, the existence of hydrogen bonding between CNTs and polymer matrix is demonstrated. Furthermore, the influences of impact parameters on solid particle erosion behavior are investigated systematically. The surface roughness and line roughness are also investigated to illustrate the mechanism of solid particle erosion. As elastic nanocomposites, the maximum and minimum erosion rate (ER) occur at 30° and 90°. The ER is relatively small when the impact velocity is at 10 m s?1, then is increased rapidly between 20 and 30 m s?1. As the size of impact particles increases to 300 µm, a rapid increase of ER occurs between 10 and 20 m s?1. All these results indicate CNTs improve the erosion resistance of TPU matrix.  相似文献   

10.
Selective laser sintering (SLS), which can directly turn 3D models into real objects, is employed to prepare the flexible thermoplastic polyurethane (TPU) conductor using self‐made carbon nanotubes (CNTs) wrapped TPU powders. The SLS printing, as a shear‐free and free‐flowing processing without compacting, provides a unique approach to construct conductive segregated networks of CNTs in the polymer matrix. The electrical conductivity for the SLS processed TPU/CNTs composite has a lower percolation threshold of 0.2 wt% and reaches ≈10−1 S m−1 at 1 wt% CNTs content, which is seven orders of magnitude higher than that of conventional injection‐molded TPU/CNTs composites at the same CNTs content. The 3D printed TPU/CNTs specimen can maintain good flexibility and durability, even after repeated bending for 1000 cycles, the electrical resistance can keep at a nearly constant value. The flexible conductive TPU/CNTs composite with complicated structures and shapes like porous piezoresistors can be easily obtained by this approach.  相似文献   

11.
Carbon nanotubes (CNTs) were dispersed without any solvent in poly(tetramethylene ether glycol), (PTMEG) well above its melting point by ultrasonication in the pulse mode and different times. The polyol/CNT suspensions were used to prepare in situ polymerized thermoplastic polyurethane TPU/CNT nanocomposites with the CNT concentration of ~ 0.05 vol%, much below the CNT geometrical percolation threshold calculated at 0.43 vol%. Results of rotational rheological measurements and ultraviolet–visible (UV‐Vis) spectroscopy analysis revealed improvement in the nanoscale CNT dispersion with sonication time. Moreover, the optical microscopic images and sedimentation behavior for these samples pointed out to the formation of segregated CNT networks with different microstructures at different sonication times. Through‐plane thermal conductivity measurements showed an increase in thermal conductivity of the in‐situ polymerized TPU/CNT nanocomposites from polyol/CNT suspensions with increasing sonication time followed by a decrease at long sonication times. Different models were used to evaluate the role of CNT dispersion state and created microstructure on thermal conductivity of nanocomposites. The formation of a segregated network at medium sonication times consisting of large CNT aggregates and small bundles increased the nanocomposite thermal conductivity up to 99.7%, while at longer sonication times, an increase in interfacial area with a corresponding increase in kapitza boundary resistance, effectively decreased the system thermal conductivity. POLYM. ENG. SCI., 56:394–407, 2016. © 2016 Society of Plastics Engineers  相似文献   

12.
The paper presents the electrostatic charge dissipative performance of conducting polymer nanocomposite impregnated fabric based on polyaniline (PANI) and zinc oxide nanoparticles (ZnO NPs). Conducting polymer nanocomposites (PANI‐ZnO NPs) were synthesized by in situ chemical oxidative polymerization of aniline by using sodium dodecyl sulfate as surfactant and HCl as dopant. Coating of PANI‐ZnO nanocomposites on the cotton fabric was carried out during polymerization. The interaction of ZnO NPs with the PANI matrix was determined by Fourier transform infrared spectra (FTIR), TGA, XRD, scanning electron Microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and conductivity measurements. The conductivity of PANI‐ZnO NP coated fabric was found to be in the range 10?3 ? 10?6 S cm?1 depending on the loading concentration of ZnO NPs in the polymer matrix. TEM and HRTEM images showed that the PANI‐ZnO nanocomposites had an average diameter of 25–30 nm and were nicely dispersed in the polymer matrix. Antistatic performance of the nanocomposite impregnated fabric was investigated by static decay meter and John Chubb instrument. The static decay time of the film was in the range 0.5 ? 3.4 s on recording the decay time from 5000 V to 500 V. This indicated that the nanocomposite based on PANI‐ZnO nanocomposites has great potential to be used as an effective antistatic material. © 2015 Society of Chemical Industry  相似文献   

13.
Polypropylene (PP), acrylonitrile butadiene styrene (ABS), and thermoplastic polyurethane (TPU) nanocomposites filled with 5 wt % of two different kinds of commercially available graphene nanoplatelets (GNPs) were prepared. Composites materials were characterized in terms of thermal properties (thermal conductivity and thermal stability) in order to study the effect of different fillers within different thermoplastic matrices. The exfoliation process and the mechanical properties were also investigated. We chose three different thermoplastic polymers (polyolefin, copolymer and elastomer) to cover a wide range of thermoplastic materials and identify a guideline in the use of GNPs for nanocomposite materials. No drastic differences were observed in terms of mechanical properties when the same matrices were filled with different GNPs. Concerning thermal conductivity, it was observed that the GNPs plane dimensions play a crucial role in the increase of conductive properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44814.  相似文献   

14.
《Ceramics International》2022,48(22):32748-32756
Polymeric composites with low density and high thermal conductivity (TC) are greatly demanded in some specific applications such as aeronautics, astronautics, and deep-sea exploration. It is a great challenge to obtain lightweight and thermally conductive polymer composites because the heat fillers have high density (>2 g/cm3) Herein, lightweight and thermally conductive thermoplastic polyurethane/hollow glass bead/boron nitride composites (TPU/HGB/BN) were prepared with the construction of a 3D BN network under the assistance of ultralightweight HGB by a solution-mixing and hot-pressing method. A 3D BN heat network has been constructed in the TPU matrix due to the alignment of the BN platelets along with the HGB microspheres during hot-pressing, which leads to a higher TC (5.34 W/mK) of the TPU/HGB/BN composites with a low density of 1.23 g/cm3, which is close to the density of pure TPU (1.20 g/cm3). In addition, the TPU/HGB/BN composites show good thermal stability with TC losses of 4.24% and 2.22%, respectively, even after treated for 50 hot-cold cycles and heated at 80 °C for 50 h. Moreover, the limiting oxygen index (LOI) of the TPU/HGB/BN composites is 51%, and they can extinguish in 8 s after ignition and exhibit enhanced flame retardancy. This work presents a simple method to design and prepare lightweight, flame retardant and thermally conductive composite materials, which can be used as lightweight thermal management materials.  相似文献   

15.
In this article is reported the preparation of carbon nanohorn (CNH)/graphene nanoplates (GNP)/polystyrene (PS) nanocomposites through in‐situ bulk polymerization of styrene monomer in the presence of CNH, followed by the addition of suspension polymerized GNP/PS bead during polymerization of styrene, as next‐generation multifunctional material for high electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) applications. Morphological analysis revealed selective dispersion of CNH in bulk polymerized PS matrix, where GNP/PS beads were randomly distributed. The formation of continuous CNH–CNH conductive path and GNP–CNH–GNP or CNH–GNP–CNH conductive network throughout the PS matrix at exceptionally low loading of CNH (1.0 wt %) and GNP (0.15 wt %) leads to high electrical conductivity (6.24 × 10?2 S cm?1) and EMI SE ~(?24.83 dB) when the nanocomposites was prepared in the presence of 75 wt % GNP/PS bead. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42803.  相似文献   

16.
Poly(vinyl alcohol) (PVA) was used to prepare nanocomposites of multi‐wall carbon nanotubes (MWCNT) and functionalized carbon nanotubes (MWCNT‐NH2) in existence of 2‐carboxyethyl acrylate oligomers (CEA). Radiation‐induced crosslinking of the prepared matrix was carried out via gamma and ion beam irradiation. A comparative study of gamma and ion beam irradiation effect on the electrical conductivity of nanocomposite was conducted. The gelation of the gamma irradiated matrix outperforms the ion beam irradiated matrix. The order of gelation is PVA > (PVA/CEA) > (PVA/CEA)‐MWCNT > (PVA/CEA)‐MWCNT‐NH2. There is a significant reduction in the swelling of the nanocomposite. The formation of nanocomposites was confirmed by scanning electron microscopy, energy‐dispersive X‐ray (EDX) and FTIR examinations. The direct current electrical properties of PVA/nanocomposites are examined at room temperature by applying electric voltage from 1 to 20 V. The results revealed that the electrical conductivity is increased by adding the carbon nanotubes and irradiation by gamma and ion beam. At an applied electric voltage 20 V, in the electrical conductivity of the unirradiated PVA was from 9.20 × 10?8 S cm?1. After adding MWCNT an increase up to 4.70 × 10?5 S cm?1 was observed. While after ion beam irradiation, a further increase up to 9.30 × 10?5 S cm?1 was noticed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46146.  相似文献   

17.
A series of conductive nanocomposites cellulose/reduced graphene oxide/polyaniline (cellulose/RGO/PANi) were synthesized via in situ oxidative polymerization of aniline on cellulose/RGO with different RGO loading to study the effect of RGO on the properties of nanocomposites. The results showed that when RGO is inserted into cellulose/PANi structure, its thermal stability and conductivity are increased. So that adding of only 0.3 wt% RGO into the cellulose/PANi structure, its conductivity is increased from 1.1 × 1 10?1 to 5.2 × 110?1 S/cm. Scanning electron microscopy results showed that the PANi nanoparticles are formed a continuous spherical shape over the cellulose/RGO template; this increases the thermal stability of nanocomposite.  相似文献   

18.
By reducing the attraction between the platelets of octadecylammonium chloride modified montmorillonite (OMMT-C18) via pre-intercalation of maleated polypropylene (MAPP), OMMT-C18 was exfoliated in thermoplastic polyurethane (TPU) matrix during melt-mixing. Wide angle X-ray diffraction, transmission electron microscopy and thermogravimetric analysis were used to investigate the microstructure of TPU nanocomposites. Three factors (including introducing sequence, the kind and the content of MAPP) showed important effects on the dispersion degree of OMMT-C18 in TPU matrix. The results confirmed that the pre-intercalation of MAPP was necessary for the exfoliation of OMMT-C18; however, the role of MAPP in TPU nanocomposites was different from that in polypropylene nanocomposites. In addition, the investigation on the morphology evolution of TPU nanocomposites showed that shear force played a key role in the formation of exfoliated TPU nanocomposites. TPU nanocomposites with exfoliated structure showed better properties compared with TPU and its nanocomposites with intercalated structure.  相似文献   

19.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

20.
Here, we demonstrate an easy method for the preparation of highly electrically conductive polycarbonate (PC)/multiwalled carbon nanotubes (MWCNTs) nanocomposites in the presence of poly(butylene terephthalate) (PBT). In the presence of MWCNTs, PC and PBT formed a miscible blend, and the MWCNTs in the PC matrix were uniformly and homogeneously dispersed after the melt mixing of the PC and PBT–MWCNT mixture. Finally, when the proportion of the PC and PBT–MWCNT mixture in the blend/MWCNT nanocomposites was changed, an electrical conductivity of 6.87 × 10?7 S/cm was obtained in the PC/PBT–MWCNT nanocomposites at an MWCNT loading as low as about 0.35 wt %. Transmission electron microscopy revealed a regular and homogeneous dispersion and distribution of the MWCNTs and formed a continuous conductive network pathway of MWCNTs throughout the matrix phase. The storage modulus and thermal stability of the PC were also enhanced by the presence of a small amount of MWCNTs in the nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号