共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced properties of polyvinyl chloride modified by graphene reinforced thermoplastic polyurethane
Tao Yang Jiating Wen Xiaoyu Guan Haojun Fan Yi Chen Jun Yan 《Polymer International》2017,66(6):925-930
Graphene sheets with a range of unusual properties and thermoplastic polyurethane (TPU ) were combined to modify polyvinyl chloride (PVC ), and the enhanced properties such as flexibility, thermal stability and mechanical properties of the PVC were investigated. In order to avoid the C ? Cl bonds in PVC being weakened, graphene was incorporated into TPU in the melting state first and then this TPU was employed as a modifier to enhance and plasticize PVC in another melt blending step. In comparison with the ternary blending method, this step‐by‐step melt blending method was more efficient and convenient. The distribution of graphene sheets in the polymer matrix is uniform and no C ? Cl bond weakened effect can be observed. Due to the similar polarity, TPU showed good compatibility with PVC and its plasticizing effect allowed a broader range of low temperature flexibility of the modified PVC matrix. Moreover, other properties of the resultant PVC matrix (PTG ‐x ) including mechanical properties, thermal stability and plasticizer migration resistance were all found to be improved. With innovative applications in mind, the development of new graphene‐based materials will certainly lead to many future advances in science and technology. © 2017 Society of Chemical Industry 相似文献
2.
Mercedes Santiago-Calvo Victoria Blasco Carolina Ruiz Rodrigo París Fernando Villafañe Miguel Ángel Rodríguez-Pérez 《应用聚合物科学杂志》2019,136(19):47474
This article addresses the optimization of water-blown rigid polyurethane (RPU) foams obtained from a polyol functionalized with graphene oxide (GO). For this purpose, a series of RPU foams are herein synthesized by varying either the isocyanate index, the contents of catalyst or the contents of surfactant, or a combination of these three components. The modifications introduced in the formulation are based on the effect of GO on the reaction kinetics. These strategies are mainly focused on the increase of both isocyanate conversion and polymerization reaction, which decrease for the foams containing GO. Density, cellular structure, thermal conductivity, and mechanical properties of the resulting foams are herein investigated. The results show how controlling PU formulation allows to improve both the thermal and the mechanical behavior in these RPU foams containing GO. The highest cell size reduction of 25% and the lowest thermal conductivity are obtained for the sample with a simultaneous increase in isocyanate index, catalyst content, and surfactant content. Moreover, the adequate combination of these components leads to a high improvement of 59% of the relative Young's modulus and of 54% of the relative collapse stress. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47474. 相似文献
3.
Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets 下载免费PDF全文
Andrea Caradonna Giovanna Colucci Mauro Giorcelli Alberto Frache Claudio Badini 《应用聚合物科学杂志》2017,134(20)
Polypropylene (PP), acrylonitrile butadiene styrene (ABS), and thermoplastic polyurethane (TPU) nanocomposites filled with 5 wt % of two different kinds of commercially available graphene nanoplatelets (GNPs) were prepared. Composites materials were characterized in terms of thermal properties (thermal conductivity and thermal stability) in order to study the effect of different fillers within different thermoplastic matrices. The exfoliation process and the mechanical properties were also investigated. We chose three different thermoplastic polymers (polyolefin, copolymer and elastomer) to cover a wide range of thermoplastic materials and identify a guideline in the use of GNPs for nanocomposite materials. No drastic differences were observed in terms of mechanical properties when the same matrices were filled with different GNPs. Concerning thermal conductivity, it was observed that the GNPs plane dimensions play a crucial role in the increase of conductive properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44814. 相似文献
4.
采用石墨烯、热塑性聚氨酯(TPU)复合改性聚氨酯注浆材料,并添加少量的粉煤灰、炉底渣及碱性激发剂制备一种低密度、高强度、快硬性的TPU/石墨烯改性聚氨酯注浆材料。借助聚氨酯弹性体材料密度测试仪、万能材料试验机、渗透系数测试仪、荧光显微镜对TPU/石墨烯改性聚氨酯注浆材料的密度、膨胀倍数、抗压强度、阻燃性能、渗透系数及微观形貌进行表征,深入分析了石墨烯和TPU的种类和含量对聚氨酯注浆材料基本物理性能、力学性能及微观结构的影响。结果表明,TPU/石墨烯改性聚氨酯注浆材料的密度为0.24~1.25 g/cm3,膨胀倍数最高可达38倍,抗压强度为15.0~43.8 MPa,相比普通聚氨酯注浆材料,改性聚氨酯注浆材料抗压强度提升1倍以上。酒精灯燃烧试验显示注浆材料无焰燃烧时间均小于20 s。石墨烯和TPU均可提高聚氨酯的强度和耐久性,改善TPU的微观形貌。TPU/石墨烯改性聚氨酯注浆材料表现出良好的强度、耐久性及弹性,是一种性能优异的注浆材料。 相似文献
5.
6.
Two series of thermoplastic polyurethane elastomers [poly(propylene glycol) (PPG) based PP samples and poly(oxytetramethylene)glycol (PTMG) based PT samples] were synthesized from isophorone diisocyanate (IPDI)/1,4-butanediol (BD)/PPG and IPDI/BD/PTMG. The IPDI/BD based hard segments contents of polyurethane prepared in this study were 40–73 wt %. These polyurethane elastomers had a constant soft segment molecular weight (average Mn, 2000) but a variable hard segment block length (n, 3.5–17.5; average Mn, 1318–5544). Studies were made on the effects of the hard segment content on the dynamic mechanical thermal properties and elastic behaviors of polyurethane elastomers. These properties of PPG based PP and PTMG based PT samples were compared. As the hard segment contents of PP and PT samples increased, dynamic tensile modulus and α-type glass transition temperature (Tg) increased; however, the β-type Tg decreased. The permanent set (%) increased with increasing hard segment content and successive maximum elongation. The permanent set of the PT sample was lower than that of the PP sample at the same hard segment content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1349–1355, 1998 相似文献
7.
A hybrid polymeric system containing carbon nanofillers with different geometrical dimensions is proposed for strategic applications, particularly for electrical properties. Two different carbon nanofillers including functionalized multiwalled carbon nanotubes (fCNTs) and functionalized graphene nanoplatelets (fGnPs) were added to thermoplastic polyurethane (TPU) to prepare single and hybrid nanofiller filled TPU through solution mixing. Sufficient exfoliation of the fGNPs in the single nanocomposites was confirmed by X-ray diffraction, while single filler and hybrid TPU nanocomposites containing fCNTs showed some re-aggregation of these nanofillers. Linear rheology together with scanning electron microscopy revealed a proper exfoliation and dispersion degree for fGnPs and fCNTs, respectively. We have shown that simultaneous addition of fCNTs–fGnPs in the form of a hybrid system into the TPU made a large surface area available and strong interfacial interactions were formed between the hybrid network and the TPU matrix. This in turn led to electrical, thermal and mechanical properties, which were superior to those predicted by the mixture law. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48520. 相似文献
8.
以己二酸系聚酯二醇为软段,二异氰酸酯与扩链剂生成的链段为硬段,制备了聚氨酯热熔胶;研究了软硬段组成、结构、相对分子质量、扩链剂、异氰酸酯指数等对聚氨酯热熔胶的力学性能、结晶性能、粘接性能及耐热性能的影响。 相似文献
9.
A newly developed kind of layered clay, rectorite (REC), has been used to yield intercalated or exfoliated thermoplastic polyurethane rubber (TPUR) nanocomposites by melt‐processing intercalation. Because of the swollen layered structure of REC, similar to that of montmorillonite, organic rectorites (OREC) can also be obtained through ion‐exchange reaction with two different quaternary ammonium salts (QAS1, QAS2) and benzidine (QAS3). The microstructure and dispersibility of OREC layers in TPUR matrix were examined by X‐ray diffraction and transmission electron microscopy, which revealed not only that the composites with lower amounts of clay are intercalation or part exfoliation nanocomposites, but also that the mechanical properties of the composites were substantially enhanced. The maximum ultimate tensile strength for TPUR/OREC nanocomposites appeared at 2 wt % OREC loading. With increasing OREC contents, the tear strength of the composites increased significantly. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 608–614, 2004 相似文献
10.
Rheological and mechanical properties of thermoplastic polyurethane elastomer derived from CO2 copolymer diol 下载免费PDF全文
CO2 copolymer diol‐based thermal polyurethane elastomers (PPC‐TPU) were prepared by the reaction of CO2 copolymer diol and methylene diphenyl diisocyanate and chain extender (ethylene glycol/1,4‐butanediol/1,6‐hexanediol) (EG/BDO/HG). The rheological and mechanical properties of PPC‐TPU were analyzed. The effects of shear rate, shear temperature, hard segment content, and variety of chain extender on the properties of PPC‐TPU were studied. The results showed that the apparent viscosity (η) of PPC‐TPU decreased with the increasing shear rate (τ), and the non‐Newtonian index (n) was less than 1. PPC‐TPU exhibited a typical character of pseudoplastic non‐Newtonian rheological behavior. The degradation during the processing was obviously inhibited by adding plasticizer and antioxidant. It was also discovered that the apparent viscosity varied with the content of hard segment and chain extender. Under the same temperature (185 °C) and shear rate (50 s?1), the apparent viscosity increased considerably with the raise of hard segment content, and the apparent viscosity and tensile strength of PPC‐TPU with EG as chain extender was the maximum. It can be seen that with the apparent shear rate increasing, the variation tendency of apparent shear stress levels off, and the nonlinear relationship of τ–γ curve tended to be obvious. PPC‐TPU exhibited a typical character of pseudoplastic non‐Newtonian rheological behavior. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45974. 相似文献
11.
Xiaomin Luo Peng Zhang Rui Liu Weihu Li Binghui Ge Min Cao 《Polymer International》2016,65(4):415-422
Functionalized graphene nanoplatelets (f‐GNS) were modified with (3‐mercaptopropyl)trimethoxysilane (MPTMS) to enhance their compatibility with the polyurethane coating matrix. The results of Fourier transform infrared spectroscopy, AFM, Raman and XRD showed that the MPTMS was successfully attached onto the surface of the graphene nanoplatelets. Functionalized graphene/waterborne polyurethane acrylate (f‐GNS/WPUA) nanocomposites were fabricated by UV‐curing technology. The SEM and TEM images indicated that f‐GNS could be well dispersed in the polymer matrix and improved the interfacial adhesion. With the incorporation of 1 wt% f‐GNS, the thermal decomposition temperature of the composites was increased by 25 °C. Meanwhile, the conductivity, hydrophobicity and tensile strength were increased. When the load was further increased, the performance of the composites showed varying degrees of reduction. However, the dielectric loss tangent (tan δ) could be maintained at 0.08 or less and the electromagnetic shielding factor of the composites reached from 5 to 36 dB, showing a good electromagnetic shielding effect at a high content (2.5 wt% f‐GNS). It was considered that f‐GNS could disperse in the waterborne polyurethane well and crosslink with the polyurethane. © 2016 Society of Chemical Industry 相似文献
12.
Thermoplastic polyurethane elastomers were prepared from 4,4‐diphenylmethane diisocyanate (MDI)/1,4‐butanediol (BD)/poly(propylene glycol) (PPG) and MDI/BD/poly(oxytetramethylene glycol) (PTMG). The MDI/BD‐based hard‐segment content of polyurethane prepared in this study was of 39–65 wt %. These polyurethane elastomers had a constant soft‐segment molecular weight (Mn , 2000), but a variable hard‐segment block length (n, 3.0–10.1; Mn , 1020–3434). The effects of the hard‐segment content on the thermal properties and elastic behavior were investigated. These properties of the PPG‐based MPP samples and the PTMG‐based MPT samples were compared. The polyurethane prepared in this study had a hard‐segment crystalline melting temperature in the range of 185.5–236.5°C. With increasing hard‐segment content, the dynamic storage modulus and glass transition temperature increased in both the MPP and MPT samples. The permanent set (%) increased with increasing hard‐segment content and successive maximum elongation. The permanent set (%) of the MPP samples was higher than that of MPT samples at the same hard‐segment content. The value of K (area of the hydrogen‐bonded carbonyl group/area of the free carbonyl group) increased with increasing hard‐segment content in both the MPP and MPT samples, and the K value of the MPT samples was higher than that of the MPP samples at the same hard‐segment content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 345–352, 1999 相似文献
13.
Moumita Kotal Suneel Kumar Srivastava Anil Kumar Bhowmick Sunity Kumar Chakraborty 《Polymer International》2011,60(5):772-780
In the past few years, layered double hydroxides (LDHs) with monolayer structure have been much studied for the development of polymer nanocomposites. LDHs with intercalated stearate anions form a bilayer structure with increased interlayer spacing and are expected to be better nanofillers in polymers. In the work reported, thermoplastic polyurethane (PU)/stearate‐intercalated LDH nanocomposites were prepared by solution intercalation and characterized. X‐ray diffraction and transmission electron microscopy confirmed the exfoliation at lower filler loading followed by intercalation at higher filler loading in PU matrix. As regards mechanical properties, these nanocomposites showed maximum improvements in tensile strength (45%) and elongation at break (53%) at 1 and 3 wt% loadings. Maximum improvements in storage and loss moduli (20%) with a shift of glass transition temperature (15 °C) and an increase in thermal stability (32 °C) at 50% weight loss were observed at 8 wt% loading in PU. Differential scanning calorimetry showed a shift of melting temperature of the soft segment in the nanocomposites compared to neat PU, possibly due to the nucleating effect of stearate‐intercalated LDH on the crystal structure of PU. All these findings are promising for the development of mechanically improved, thermally stable novel PU nanocomposites. Copyright © 2011 Society of Chemical Industry 相似文献
14.
Xin Luo Yuanpeng Wu Meiling Guo Xi Yang Lingyun Xie Jingjuan Lai Zhenyu Li Hongwei Zhou 《应用聚合物科学杂志》2021,138(33):50827
Development of shape memory polymer materials with integrated self-healing ability, shape memory property, and outstanding mechanical properties is a challenge. Herein, isophorone diisocyanate, polytetramethylene ether glycol, dimethylglyoxime, and glycerol have been used to preparation polyurethane by reacting at 80°C for 6 h. Then, graphene oxide (GO) was added and the reaction keep at 80°C for 4 h to obtain polyurethane/GO composite with self-healing and shape memory properties. Scanning electron microscopy shows that the GO sheets were dispersed uniformly in the polyurethane matrix. The thermal stability was characterized by thermogravimetric analyses. The tensile test shows that the Young's modulus of the composites increases from 38.57 ± 4.35 MPa for pure polyurethane to 95.36 ± 10.35 MPa for the polyurethane composite with a GO content of 0.5 wt%, and the tensile strength increases from 6.28 ± 0.67 to 15.65 ± 1.54 MPa. The oxime carbamate bond and hydrogen bond endow the composite good self-healing property. The healing efficiency can reach 98.84%. In addition, the composite has excellent shape memory property, with a shape recovery ratio of 88.6% and a shape fixation ratio of 55.2%. This work provides a promising way to fabricate stimulus-responsive composite with versatile functions. 相似文献
15.
Segmented thermoplastic polyurethane (TPU) was synthesized from methylene bis(cyclohexyl isocyanate) (H12MDI), ethylenediamine (EDA), and poly(propylene glycol) (PPG) with a molecular weight of 1000. The ratio of hard segment to soft segment (NCO/OH) is changed to test the chemical and physical properties. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and impedance spectroscopy (IS) were utilized to monitor the phase change of these TPU samples with various lithium perchlorate (LiClO4) concentrations. Significant changes occur in the FTIR spectrum of the TPU with LiClO4 concentration above 0.5 mmol/g TPU, indicating that an interaction existed between the lithium cation and the hard segment or soft phase. The soft-segment Tg increased with increasing LiClO4 concentration through the examination of DSC. IS results indicate an increase in bulk conductivity as the salt concentration is increased. Electrochemical stability of the TPU sample was studied by cyclic votammetry (CV). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 389–399, 2001 相似文献
16.
Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU) 总被引:1,自引:0,他引:1
Three functionalized polypropylenes (PP), a maleated PP (PP-g-MA), primary amine functionalized PP (PP-g-NH2), and secondary amine functionalized PP (PP-g-NHR), were melt blended with a thermoplastic polyurethane (TPU) at different compositions. Compatibility of each functionalized PP with TPU was compared by investigating the binary blends using rheological (mixer torques, dynamic shear rheometry), thermal (dynamic mechanical analysis), mechanical (tensile test), and morphological (scanning electron microscopy with image analysis, particle size analysis) measurements. Compatibility of the three functionalized PP's with TPU is ranked in a decreasing order as follows: PP-g-NHR≥PP-g-NH2?PP-g-MA, which is attributed to higher reactivity of amine (primary and secondary) with urethane linkages. Accordingly, the TPU blends with the two types of amine functionalized PP's exhibited much better synergy, as reflected by much improved mechanical properties including higher tensile strength and ultimate elongation, and finer and more stable morphologies. 相似文献
17.
Polyimide (PI) has the inherent defect of poor intrinsic thermal conductivity and cannot meet the increasing demand for rapid heat dissipation in the thermal management introduction. To improve the thermal conductivity of PI, in this study, thick sheet graphene-ionic liquid (TSG-IL) functionalized graphene has been prepared by a one-step ultrasonic-chemical method. Under the action of mechanical force, IL is successfully modified on the surface of TSG, and TSG is peeled to some extent. TSG-IL/PI has been prepared the typical method of solution casting followed by thermal imidization. The structure, morphology, thermal conductivity, and mechanical properties of the composites are evaluated by Fourier-transform infrared spectroscopy, x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, and Hot Disk thermal conductivity tests. When the amount of TSG-IL is 0.3 wt%, the thermal conductivity of TSG-IL/PI (0.18 W·m−1·k−1) than pure PI and TSG (ultrasonication)/PI increased by 50.0% and 28.6%, respectively. Moreover, it can maintain good mechanical properties, and its tensile strength (121.5 MPa) is 6.5% and 3.5% higher than that of pure PI and TSG (ultrasonication)/PI, respectively. The potential for application in the preparation of composites with high-thermal conductivity is promising. 相似文献
18.
Xulin Yang Yingqing Zhan Jian Yang Hailong Tang Fanbing Meng Jiachun Zhong Rui Zhao Xiaobo Liu 《Polymer International》2012,61(6):880-887
In this study, novel nitrile functionalized graphene (GN‐nitrile)/poly(arylene ether nitrile) (PEN) nanocomposites were prepared by an easy solution‐casting method and investigated for the effect of surface modification on the dielectric, mechanical and thermal properties. Graphene (GN) was first functionalized by introduction of nitrile groups onto the GN plane, which was confirmed by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, thermogravimetric analysis and dispersibility research. Compared with pure GN, the grafted nitrile groups on the GN‐nitrile can interact with nitrile groups in PEN and lead to flat but better dispersion and stronger adhesion in/to the PEN matrix. Consequently, GN‐nitrile had a more significant enhancement effect on the properties of PEN. The dielectric constant of the PEN/GN‐nitrile nanocomposite with 5 wt% GN‐nitrile reaches 11.5 at 100 Hz, which is much larger than that of the pure PEN matrix (3.1). Meanwhile, dielectric loss is quite small and stable and the dielectric properties showed little frequency dependence. For 5 wt% GN‐nitrile reinforced PEN composites, increases of 17.6% in tensile strength, 26.4% in tensile modulus and 21 °C in Td5% were obtained. All PEN/GN‐nitrile nanocomposite films can stand high temperature, up to 480 °C. Hence, novel dielectric PEN/GN‐nitrile nanocomposite films with excellent mechanical and thermal properties can be used as dielectric materials under some critical circumstances such as high wear and temperature. Copyright © 2012 Society of Chemical Industry 相似文献
19.
Dae‐Geon Yoo Sung Soo Park Chi‐Woo Noh Inho Shin Ki‐Hyun Lim Jinha Son Suk‐kyun Ahn Chang‐Sik Ha 《Polymer International》2019,68(8):1441-1449
Graphite was functionalized electrochemically in a potassium fluoride solution and used to prepare polyimide (PI)/graphene nanohybrid films. The as‐made electrochemically fluorinated graphene (EFG) was used to prepare nanohybrid films with colorless PI, which was synthesized from 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride and bis(trifluoromethyl) benzidine by in situ polymerization. The surface functionalization of graphite was characterized by powder XRD, TEM with energy dispersive X‐ray spectroscopy elemental mapping, X‐ray photoelectron spectroscopy, Raman spectroscopy, and TGA. The microstructure of the films was characterized by Fourier transform IR spectroscopy, XRD and SEM. The film properties were measured using a universal testing machine, TGA, dynamic mechanical analysis, four‐point probe, UV–visible spectroscopy and water contact angle analysis. EFG improved the tensile strength and modulus of the nanohybrid films by 20% and 50%, respectively. The glass transition temperature and electrical conductivity of the nanohybrid films were 12 °C and nine orders of magnitude higher than those of the neat PI film, respectively. The nanohybrid film maintained 80% optical transmittance even after the addition of 0.1 wt% EFG. © 2019 Society of Chemical Industry 相似文献
20.
Morphology and properties of shape memory thermoplastic polyurethane composites incorporating graphene‐montmorillonite hybrids 下载免费PDF全文
Xing Zhou Bin Hu Wen Qiang Xiao Lei Yan Zheng Jun Wang Jian Jun Zhang Hai Lan Lin Jun Bian Yun Lu 《应用聚合物科学杂志》2018,135(15)
A novel hybrid containing graphene oxide (GO) and montmorillonite (MMT) was first synthesized by solution reaction. Then shape memory thermoplastic polyurethane (TPU) composites incorporating MMT–GO hybrid was fabricated via melt blending. Infrared spectra indicated that GO and MMT have been combined together through chemical hydrogen bonding. Tensile tests showed that MMT‐GO hybrids provided substantially greater mechanical property enhancement than using MMT or GO as filler alone. With only 0.25 wt % loading of MMT–GO hybrid (the mass ratio of MMT:GO is 1:1), there was a relatively high improvement in tensile properties of TPU composites, compared with those of TPU/GO and TPU/MMT composites at the same filler content. Thermal analysis indicated that MMT‐GO hybrids enhanced the thermal decomposition temperatures of TPU composites. Shape memory property tests showed that the shape fixing rate of TPU composites was effectively enhanced by incorporating MMT–GO hybrid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46149. 相似文献