首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In injection molding, complete mold cavity filling is a design goal that has to be met 100% every time. Mold cavity filling is a complicated process which depends on many variables such as mold cavity surface temperature, injection pressure, injection speed, melt temperature, flow index of material being molded, etc. The aim of experimental investigation of the low thermal inertia molding (LTIM) [1] process is to demonstrate the feasibility of molding completely filled, thin parts at low injection pressure and injection speed without sacrificing part quality. The evaluation of the new molding concept consists of comparison of a conventionally molded thin rectangular part with an identical part molded by the LTIM process. The length of filling in the conventional cavity and in the LTIM cavity are compared at different injection pressures and injection speeds. The mold design, experimental procedure, and results of the molding are discussed in the following sections.  相似文献   

2.
The performance of copper alloy mold tool materials in injection molding has been examined with respect to cycle time, part quality and energy consumption using in‐process monitoring techniques. A mold insert manufactured from conventional tool steel was compared to four identical inserts made from beryllium‐free copper alloys with copper contents ranging from 85 to 96%. Injection molding trials using high density polyethylene and polybutyl terepthalate were performed using a highly instrumented injection molding machine. Results showed that copper alloy mold tools exhibited cooling rates up to 29% faster than conventional tool steel and that cooling rate was related to thermal conductivity of the alloy. Lower cycle times were achievable with copper alloy than for tool steel before part quality deterioration occurred. The results suggest that copper alloy tooling has the potential to achieve significant reductions in cycle time without detriment to the process or product quality. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
The injection molding process has several inherent problems associated with the constant temperature mold. A basic solution is the rapid thermal response molding process that facilitates rapid temperature change at the mold surface thereby improving quality of molded parts without increasing cycle time. Rapid heating and cooling systems consisting of one metallic heating layer and one oxide insulation layer were investigated in this paper. Design issues towards developing a mold capable of raising temperature from 25°C to 250°C in 2 seconds and cooling to 50°C within 10 seconds were discussed. To reduce thermal stresses in the layers during heating and cooling, materials with closely matched low thermal expansion coefficient were used for both layers. Effects of various design parameters, such as layer thickness, power density and material properties, on the performance of the insert were studied in detail with the aid of heat transfer simulation and thermal stress simulation. Several rapid thermal response mold inserts were constructed on the basis of the simulation results. The experimental heating and cooling response agrees with the simulation and also satisfies the target heating and cooling requirement.  相似文献   

4.
Micro-computed tomography (μ-CT) was used to examine the fidelity of three-dimensional (3D) bioceramic scaffolds made from dicalcium phosphate dihydrate (DCPD) cement. The scaffolds were produced with a multi-step indirect solid freeform fabrication method. Accuracy and fidelity were examined after each step. The pre-tracing of the perimeter of a layer in the mold fabrication step caused the round-off of the square channels from the design. However, the overall shape of the scaffold was not significantly different from the wax mold. There is relatively no change in the strut and the channel-size measurements between the computer-generated model and the molds fabricated by 3D printing. The change in volume fraction of DCPD cement scaffolds is higher than biphasic scaffolds due to the internal pores. These results demonstrated that μ-CT is a very useful tool to analyze and evaluate the internal architectural of the complicated 3D scaffold-fabrication process.  相似文献   

5.
Abstract:

Injection molding is a very mature technology, but the growth of layer-build, additive, manufacturing technologies (rapid prototyping, RP) has the potential of expanding injection molding into areas not commercially feasible with traditional molds and molding techniques. This integration of injection molding with rapid prototyping has undergone many demonstrations of potential. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an approach to accomplish numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also been carried out with an RP fabricated SL mold. Stereolithography (SL) is an original and typical rapid-prototyping method, which is chosen as the study object in the paper.  相似文献   

6.
The article is focused on analysis of global efficiency of new mold for rotational molding of plastic parts, being directly heated by thermal fluid. The overall efficiency is based on several items such as reduction of cycle time, better uniformity of heating–cooling and low energy consumption. The new tool takes advantage of additive fabrication and electroforming for making the optimal manifold and cavity shell of the mold. Experimental test of a prototype mold was carried out on an experimental rotational molding machine, developed for this purpose, measuring wall temperature, and internal air temperature, with and without plastic material inside. Results were compared with conventional mold heated into an oven and to theoretical simulations done by Computational Fluid Dynamic software (CFD). The analysis represents considerable improvement of cycle time related to conventional methods (heated by oven) and better thermal uniformity to conventional procedures by direct heating of oil with external channels. In addition to thermal analysis an energetic efficiency study was done. POLYM. ENG. SCI., 52:1998–2005, 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
《Polymer Composites》2017,38(1):185-191
Carbon fiber was blended into the polysulfone matrix by twin screw extruder. The polymer composites samples were prepared using four different processing technologies, the compression molding, edge‐gating injection molding, sprue‐gating injection molding, and the multi‐gating injection molding techniques. Among four techniques, the composite samples manufactured by multi‐gating injection molding technique got a higher value of thermal conductivity, which is due to the carbon fibers orientation and distribution. The experimental result indicated that the fiber orientation have a significant influence on the thermal conductivity of polymer composites. The thermal conductivity of sample made by multi‐gating injection molding was 1.82 W/(m·K) when the fiber content was 26 vol%, which was nearly twice than the values obtained by conventional technologies. POLYM. COMPOS., 38:185–191, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
采用电热方式的高光注塑模具可以有效消除传统注塑成型过程中塑件的熔接痕、浮纤、银纹等缺陷。高光注塑成型技术要求对模具温度的快速动态控制,然而在电加热高光注塑成型中,电加热棒与模具安装孔之间不可避免地存在间隙,间隙层内的空气大大阻碍热量向模具传递。研究了电加热棒与模具安装孔之间的间隙对电热变模温加热效率的影响,构建了电加热高光注塑模具的三维热响应分析模型,利用有限元分析软件ANSYS进行了三维瞬态传热分析,得到了在不同间隙下的模具表面和电加热棒内部的热响应曲线,并通过大量实验证明了理论分析和模拟方法的正确性。结果表明,加热相同时间,间隙量越小,模具表面温度越高,电加热棒内部温度越低,加热效率越高,相较于间隙在0.32 mm,间隙在0.05 mm加热到60 s的模具表面温度至少高出50%,电加热棒内部的温度至少低55%。隙量对模具加热效率的影响并非成线性关系,而是间隙量在越小的区间,加热效率对间隙更加敏感,研究结果为电热变模温高光模具结构设计和电加热棒的选用提供依据。  相似文献   

9.
10.
提出了一种以石墨烯纳米镀层辅助实现快速热循环注射成型的新方法,采用化学气相沉积工艺在模具型腔表面制备连续且致密的化学键合石墨烯镀层,仅需低压电源驱动就能将型腔表面温度迅速提升至聚合物材料玻璃化转变温度(Tg)之上并进行实时调控,型腔表面温度分布均匀且具有较高的降温速率,可满足注射成型快变模温调控的要求。结果表明,利用石墨烯镀层快速热循环注射成型方法可有效改善注射成型熔体流动行为,明显消除制品的熔接痕。  相似文献   

11.
气体辅助注射成型充填过程的数值模拟   总被引:2,自引:4,他引:2       下载免费PDF全文
描述了气体辅助注射成型的工艺过程及熔体充填和气体穿入的数学模型,采用有限元/有限差分/控制体积法计算充填阶段的压力场和温度场,确定熔体前沿和熔体/气体界面两类移动边界,并对典型制件充模过程进行了模拟.  相似文献   

12.
《Ceramics International》2020,46(3):3002-3008
The high temperatures generated in the cutting zone during machining processes results in an increase of wear mechanisms, reducing the lifetime of cutting tools. In this sense, cutting tools industry is constantly looking for new ways to reduce this temperature. This work proposes a novel cemented carbide cutting tool design and fabrication process for enhancing these tools thermal conductivity. This design incorporates copper heat sinks in designated strategic locations, fabricated using innovative laser green compacts machining.A thermal conductivity of 127 W/m.K was obtained for WC-Co/Cu, considerably higher than that of WC-Co (36 W/m.K). This approach for obtaining WC-Co/Cu cutting tools was found effective for increasing locally the thermal conductivity, especially in the cutting zone vicinity.  相似文献   

13.
Means of reducing the flow-induced residual stresses in injection molded parts through optimization of the thermal history of the process are presented. An approach through the use of a passive insulation layer with low thermal inertia on the cavity surface was investigated. The passive insulation layer prevents the polymer melt from freezing during mold filling and allows the flow-induced stresses to relax after the filling. The criteria for the optimal thermal properties and the required thickness of the layer are presented. A numerical simulation model of non-isothermal filling and cooling of viscoelastic materials was also used to understand the molding process and to evaluate this approach. This model predicts the stress development and relaxation in the molding cycle. Both simulation and experimental results show that the final stresses in the molded parts can be reduced significantly with the use of an insulation layer. This technique can also be applied to other molding or forming processes in order to decouple the material flow and cooling process for minimum residual stresses in the molded parts.  相似文献   

14.
Many efforts have been made to obtain uniform cell structures from foam injection molding techniques. However, cell nucleation mechanism and complex dynamics during the cell formation have rarely been well understood. Here, high‐pressure foam injection molding (HPFIM) is achieved by combining the injection–compression molding with core back foaming (ICMCBF) technique. The influences of compression pressure and time on the cell structure of polystyrene foam during the foaming process are studied. Compared with low pressure for conventional foam injection molding, high compression pressure (200 bar) and fast pressure drop rate of ICMCBF endow the foam with the highest cell density (1.59 × 107 cells cm?3), and the smallest cell size (15 µm). The tensile strength and impact strength are enhanced by about 60% (from 22.3 to 35.6 MPa) and 80% (from 3.6 to 6.8 MPa), respectively. This study gives a critical understanding of the cell nucleation and growth mechanism of the foam injection molding and supplies a new strategy for the fabrication of foam with uniform cell structure.  相似文献   

15.
Polypropylene‐based composites filled with carbon fibers and multiwall carbon nanotubes were produced by coagulation precipitation technique. Composite articles were produced by conventional injection molding technique. It was shown that the addition of carbon nanotubes (10% of total amount of carbon fibers) results in significantly increased anisotropic thermal conductivity of the composite due to formation of thermal conductive bridges between carbon fibers, which are oriented during molding. The addition of CNTs has a significant effect with more than a 50–70% increase of both the axial and transverse thermal conductivity of the composite. Produced composites were used for injection molding of polymeric radiators for LED lamps, showing sufficient heat dissipation efficiency allowing using them for industrial application in the field. POLYM. COMPOS., 36:1951–1957, 2015. © 2014 Society of Plastics Engineer  相似文献   

16.
Since the application of cordierite ceramics is limited by the disadvantages of traditional preparation techniques, 3D printing technology provides the only choice for the rapid preparation of cordierite ceramics with highly complex structures. In this work, the fabrication of cordierite ceramics with complex structures was achieved by direct ink writing. The near-net-shape of cordierite ceramics was realized by the volume expansion caused by the phase transformation. A cordierite ceramic with an average shrinkage rate of 1.58 % was obtained at 1400 °C. The low shrinkage avoids design and manufacturing procedures carried out for dimensional and alignment errors. In addition, the coefficient of thermal expansion was as low as 1.69 × 10?6 °C?1. The effect of configuration on the thermal behavior of cordierite ceramics is understood by analyzing the phase composition and microstructure. The cordierites ink reported in this work offers additional possibilities for the production of novel complex structures.  相似文献   

17.
The rapid thermal response (RTR) injection molding is a novel process developed to raise the mold surface temperature rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. Both 2.5-D shell analysis and 3-D solid analysis were performed, and the simulation results were compared with the prior experimental results. Coupled analysis with transient heat transfer simulation was also studied to realize more reliable thin-wall-flow estimation for the RTR molding process. The proposed coupled simulation approach based on solid elements provides reliable flow estimation by accounting for the effects of the unique thermal boundary conditions of the RTR mold.  相似文献   

18.
Presently, the mold and resin are heated to promote resin flow and shorten curing period in order to improve manufacturing efficiency of resin transfer molding (RTM). This nonisothermal manufacturing process easily generates three-dimensional thermal gradients in the direction of resin flow and thickness of composite part. However, the existing heating systems only consider the thermal gradients along thickness direction. The thermal gradients in direction of resin flow cannot be reduced which will lead to residual stress even deformation and cracking in composite part. This article aims at reducing the three-dimensional thermal gradients in the direction of resin flow and thickness of composite part. Based on the theory of energy and fluid flow, an optimization method of heating system design by using numerical simulation is proposed. The results show this method reduces the three-dimensional thermal gradients effectively in composite part manufactured by RTM process. This study can provide powerful tools for heating system design to manufacture composites products in polymer industry. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48948.  相似文献   

19.
Recent improvements in injection molding numerical simulation software have led to the possibility of computing fiber orientation in fiber reinforced materials during and at the end of the injection molding process. However, mechanical, thermal, and electrical properties of fiber reinforced materials are still largely measured experimentally. While theoretical models that consider fiber orientation for the prediction of those properties exist, estimating them numerically has not yet been practical. In the present study, two different models are used to estimate the thermal conductivity of fiber reinforced thermoplastics (FRT) using fiber orientation obtained by injection molding numerical simulation software. Experimental data were obtained by measuring fiber orientation in injection molded samples' micrographs by image processing methods. The results were then compared with the numerically obtained prediction and good agreement between numerical and experimental fiber orientation was found. Thermal conductivity for the same samples was computed by applying two different FRT thermal conductivity models using numerically obtained fiber orientation. In the case of thermal conductivity, predicted results were consistent with experimental data measurements, showing the validity of the models. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39811.  相似文献   

20.
In application as a thermal barrier coating (TBC), yttria stabilised zirconia (YSZ) approaches some limits of performance. To further enhance the efficiency of gas turbines, higher temperature capability and a longer lifetime of the coating are needed for the next generation of TBCs. Pyrochlore oxides of general composition, A2B2O7, where A is a 3+ cation (La to Lu) and B is a 4+ cation (Zr, Hf, Ti, etc.) have high melting point, fair coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high temperature thermal barrier coatings. Among those oxide materials lanthanum zirconate (LZ/La2Zr2O7) offers very attractive properties. This work describes the fabrication, microstructure and high temperature (1280 °C) thermal cycling behaviour of lanthanum zirconate coatings with five different coating architectures, deposited using atmospheric plasma spray process. The coating architecture which had five layers with two intermixed interlayers had much longer life time than other considered architectures. The coatings were characterised using X-ray diffraction, energy dispersive spectrometry, optical and scanning electron microscopy, before and after thermal cycling tests, to study the coating failure mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号