首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The matrix resin as the backbone material plays a crucial role in the performance of a photoresist. In this study, a novel amide–imide copolymer, poly[N‐(p‐hydroxyphenyl) methacrylamide‐coN‐phenylmaleimide], was successfully prepared. This copolymer was very close to 1 : 1 (molar ratio) in composition and was predominately alternating in structure during the copolymerization with an equimolar monomer feed ratio. It had good solubility in organic solvents and good film‐forming characteristic, and it was also soluble in a basic aqueous solution. Differential scanning calorimetry and thermogravimetric analyses showed that it had a glass‐transition temperature at about 290°C and excellent thermostability. Photolithographic experiments indicated that the UV photoresist formulated with this copolymer as a matrix resin, diazonaphthoquinone sulfonate as a photosensitizer, a solvent, and other additives had a resolution of about 1 μm, a contrast of 2.83, and a sensitivity of 28 mJ/cm2. This photoresist had good plasma etching resistance and could endure 260°C for 30 min without thermal deformation of the lithographic images. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Vinylester resin‐clay hybrids were prepared by the mixing different types of organically‐modified montmorillonite (OMMT) with vinylester resin (VER) prepolymer, followed by thermal polymerization. VER prepolymer was synthesized from the reaction of diglycidylether of bisphenol‐A (DGEBA) with acrylic acid. Various types of organic ammonium salts have been used as intercalating agents for montmorillonite, including N,N‐dimethyl‐N‐(4‐vinylbenzyl)stearyl ammonium chloride (VSA), N‐allyl‐N,N‐dimethyl‐stearyl ammonium chloride (ASA) and N,N‐dimethyl‐stearyl ammonium chloride (SA). The dispersion of OMMT into VER matrix was studied by XRD, which indicates the dependence of the morphology mainly on the OMMT content. UV–vis spectra of the hybrids were used to give a quantitative value of the effect of OMMT content on the transparency of VER/OMMT hybrid films. Also, the Vickers test has been performed to study the effect of OMMT content on the surface hardness of the hybrid films. In addition, the thermal properties of the hybrids have been characterized by measuring the softening points and thermogravimetric analyses of the hybrids in comparison with the pure resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Epoxy‐terminated siloxane‐contained resin (BCDS/OBBA‐ETS) with high tensile strength and lap shear strength as well as good thermal stability was synthesized and characterized by 1H‐NMR and Fourier transform infrared spectroscopy. Carboxy‐capped disiloxane‐4,4′‐oxybis (benzoic acid) ester oligomer (BCDS/OBBA) was firstly prepared from the reaction between 1,3‐bis(chloromethyl)‐1,1,3,3‐tetramethyl‐disiloxane and 4,4′‐oxybis(benzoic acid) (OBBA) in N,N‐dimethylformamide in the presence of triethylamine. Then, the BCDS/OBBA oligomer was reacted with epichlorohydrin to obtain the title BCDS/OBBA‐ETS resin. Cured with liquid polyamide L‐651, or diethylenetriamine, the mechanical and thermal properties as well as the lap shear strength of the BCDS/OBBA‐ETS resin were evaluated. The results indicated that the BCDS/OBBA‐ETS resin exhibited good thermal stability below 200°C, and the glass transition temperature (Tg) was about 64°C after cured with L‐651. The tensile strength of same cured BCDS/OBBA‐ETS resin was 27.46 MPa with a stain at break of 42.11%, and the lap shear strength for bonding stainless steel was 18.59 MPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups was prepared by the copolymerization of 4‐styrenesulfonic acid sodium salts (SSS) with N‐phenylmethacrylamide (copolymer A) or p‐hydroxy‐N‐phenylmethacrylamide (copolymer B), and its properties such as solubility changes, photochemical reaction, and photoresist characteristics were studied. The copolymer containing a relatively higher amount of SSS units was soluble in water. Solubility changes of the copolymers in the various buffer solutions of pH 4 ~ 11 and in water upon irradiation were observed by the measurement of insoluble fraction. The copolymers were soluble in water before irradiation, whereas they became insoluble upon irradiation with the UV light of 254 nm. The photochemical reaction of the copolymer studied by the UV and IR absorption spectroscopies indicated that a photo‐Fries rearrangement was favored for copolymer A, whereas a photocrosslinking reaction was predominate for copolymer B. Resist properties of the copolymers were studied by measurement of the normalized thickness and by development of the micropattern. Negative tone images with a resolution of 1 μm were obtained with these materials that have a sensitivity (D) of ~ 1100 mJ/cm2 with an aqueous developing process.© 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1172–1180, 2002  相似文献   

5.
Fluorine‐containing copolybenzoxazines were successfully prepared by reacting bisphenol‐AF/aniline‐based benzoxazine resin (BAF‐a) with 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride (6FDA) in N,N‐dimethylacetamide solvent. The dielectric and thermal properties as well as flexibility of the resulting copolymer films were investigated. The incorporation of fluorine groups into polybenzoxazine was found to substantially decrease the dielectric constant of the resulting copolybenzoxazine to as low as 2.6. The formation of ester linkages between the hydroxyl groups in the poly(BAF‐a) and the carbonyl groups in the 6FDA resulted in substantially enhanced flexibility of the copolybenzoxazines. Moreover, the copolymers showed superior degradation temperature and significant improvement in char yield, up to 464 °C and 56%, respectively. The glass‐transition temperature of the copolybenzoxazines was increased with increasing dianhydride content and exhibited a maximum value of 290 °C at 2.5/1 mole ratio of poly(BAF‐a) to 6FDA. Therefore, the fluorine‐containing dianhydride‐modified polybenzoxazines are appropriate for applications as polymeric films for coatings and as a good electrical insulation material with high thermal resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45204.  相似文献   

6.
A functional polyurethane coating with ultraviolet (UV) rays converting ability of changing higher energy UV rays into lower ones was prepared from poly(conjugated azomethine‐urethane) (CAUP) reacting with hydroxyl polyacrylate resin (HPAR). As an oligomeric isocyanate, CAUP was prepared in a reaction of toluene‐2,4‐diisocyanate with N,N′‐bis(4‐hydroxyl‐3‐methoxybenzylidene)‐o, m or p‐diaminobenzene that was synthesized from vanillin and o‐phenylenediamine or m‐phenylenediamine or p‐phenylenediamine. Fourier transform infrared spectroscopy, 1H‐NMR, UV–vis, and fluorescence spectra were used to characterize those synthesized products and HPAR/CAUP films. UV‐converting abilities of HPAR/CAUP films had been demonstrated by natural exposure to ageing and the fluorescence emission spectra of HPAR/CAUP films and CAUP solutions. Red‐shift phenomena in the fluorescence emission spectra were due to molecule aggregations and stacks caused by intramolecular and intermolecular interactions such as hydrogen bonding effects. Dynamic mechanical thermal analysis and thermogravimetric analysis techniques were employed to study their mechanical and thermal properties of HPAR/CAUP films. The films exhibited excellent mechanical properties and owned high glass transition temperatures over 97.0°C, and their maximum thermal degradation temperatures were about 176.0°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Three adamantane derivatives substituted by epoxy groups, 1,3‐bis(glycidyloxy)adamantane ( 2a ), 5,7‐dimethyl‐1,3‐bis(glycidyloxy)adamantane ( 2b ), 1,3,5‐tris(glycidyloxy)adamantane ( 2c ), were synthesized from the corresponding adamantanediol or triol in good yields. These three epoxy compounds were polymerized with an acid anhydride, and the heat resistance of the resulting resins was evaluated. The resin prepared from 2c exhibited high heat resistance with the glass transition temperature (Tg) of 208°C and low degree of coloring by heating. The epoxy compounds were also found to be potentially useful as the precursors of high heat‐resistant resins by thermal homopolymerization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A novel high‐performance resin system with low injection temperature for resin transfer moulding, M4506, was developed, which was made of 4,4′‐bismaleimidodiphenylmethane, o,o′‐diallyl bisphenol A, o,o′‐diallyl bisphenol A ether, and 1,1′‐bis(4‐cyanatophenyl)ethane. The processing characteristics, thermal and mechanical properties of the system were studied, and the effect of differing stoichiometries of each component on the processing and performance parameters was discussed. Investigations show that the processing properties of the M4506 system are greatly dependent on the stoichiometries of each component in the formulations, while all the three formulations developed in this paper have good processing characteristics, their suitable injection temperature are between 40 and 50 °C, depending on their respective formulation. The three formulations exhibited outstanding heat resistance (Tg = 294–300 °C) and thermal stability, good toughness and high strength, evidence that the M4506 system is a potential candidate as a high‐performance RTM matrix for advance composites as well as high‐performance paints with no solvents. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The article describes the preparation of cast copolymer sheets of methyl methacrylate with varying mole fractions of N‐(p‐methoxyphenyl) itaconimide/N‐(2‐methoxy‐5‐chlorophenyl) itaconimide/N‐(3‐methoxy‐5‐chlorophenyl) itaconimide monomers by bulk copolymerization using azobisisobutyronitrile as an initiator. The effect of incorporation of varying mole fractions of N‐arylsubstituted itaconimides in poly(methyl methacrylate) (PMMA) backbone on the thermal, optical and physicomechanical properties of cast acrylic sheets were evaluated. The glass transition temperature and the thermal stability increased with increasing amounts of itaconimides in the polymer backbone. An increase in tensile strength, flexural strength, and storage modulus was also observed. The impact strength decreased marginally upon incorporation of imides into the polymer backbone. A slight decrease in the transparency and a significant increase (4–50%) in the haze was observed. The chemical resistance of PMMA remains unaffected by copolymerization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The copolymer of methacrylic acid anhydride and N‐2‐pyridyl bi(methacryl)imide was prepared based on the reaction of polymethacrylic acid with 2‐pyridylamine. The molecular structure was characterized by 1H‐NMR, FTIR, UV–Vis, and circular dichroism techniques. The physical properties of polymethacrylic acid change significantly after an introduction of 6 mol % N‐2‐pyridyl bi(methacryl)imide unit. In particular, the thermal degradation of the polymer was systematically studied in flowing nitrogen and air from room temperature to 800°C by thermogravimetry at a constant heating rate of 10°C/min. In both atmospheres, a four‐stage degradation process of the copolymer of methacrylic acid anhydride and N‐2‐pyridyl bi(methacryl)imide was revealed. The initial thermal degradation temperature Td, and the first, second, and third temperatures at the maximum weight‐loss rate Tdm1, Tdm2, and Tdm3 all decrease with decreasing sample size or changing testing atmosphere from nitrogen to air, but the fourth temperature at the maximum weight‐loss rate Tdm4 increases. The maximum weight‐loss rate, char yield at elevated temperature, four‐stage decomposition process, and three kinetic parameters of the thermal degradation were discussed in detail. It is suggested that the copolymer of methacrylic acid anhydride and N‐2‐pyridyl bi(methacryl)imide exhibits low thermal stability and multistage degradation characteristics. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1673–1678, 2002  相似文献   

11.
A branched random copolymer, poly[(hydroxyethyl acrylate)‐r‐(N‐vinylcarbazole)] (BPHNV), was synthesized through a facile one‐pot free radical polymerization with hydroxyethyl acrylate and N‐vinylcarbazole monomers, using 4‐vinylmethylmercaptan as the chain transfer agent. BPHNV was employed to noncovalently modify multiwall carbon nanotubes (MWCNTs) by π–π interaction. The as‐modified MWCNTs were then incorporated into epoxy resin to improve the thermal conductivity and mechanical properties of epoxy thermosets. The results suggest that, due to both the conjugation structure and the epoxy‐philic component, BPHNV could form a polymer layer on the wall of MWCNTs and inhibit entanglement, helping the uniform dispersion of MWCNTs in epoxy matrix. Owing to the unprecedented thermal conductivity of MWCNTs and the enhancement in the interfacial interaction between fillers and matrix, the thermal conductivity of epoxy/MWCNTs/BPHNV composites increases by 78% at extremely low filler loadings, while the electrical resistivity is still maintained on account of the insulating polymer layer. Meanwhile, the mechanical properties and glass transition temperature (Tg) of the thermosets are elevated effectively, with no significant decrease occurring to the modulus. The addition of as little as 0.1 wt% of MWCNTs decorated with 1.0 wt% of BPHNV to an epoxy matrix affords a great increase of 130% in impact strength for the epoxy thermosets, as well as an increase of over 13 °C in Tg. © 2018 Society of Chemical Industry  相似文献   

12.
Temperature‐responsive polymers have recently gained importance due to their applications in drug delivery. Herein, temperature‐responsive graft copolymer (Alg‐g‐PDEAAm) of alginate and N,N‐diethylacrylamide was synthesized by microwave‐assisted copolymerization using potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine initiator system. The reaction conditions for the best grafting (331%) have been optimized by changing microwave irradiation time, temperature, N,N‐diethylacrylamide, and alginate concentrations. The spectroscopic characteristic, thermal properties, and surface morphology of the copolymers were investigated by FTIR, 1H‐NMR, DSC/TGA, XRD, gel permeation chromatography, and SEM. Furthermore, low critical solution temperatures of Alg‐g‐PDEAAm copolymers were detected by UV spectroscopy. Swelling ratio of graft microspheres was carried out at 25, 32, and 37 °C, and microspheres were found exhibiting temperature‐responsive property. Cytotoxicity test indicated the Alg‐g‐PDEAAm copolymer and its microsphere were biocompatible. Therefore, based on the results the synthesized temperature‐responsive copolymer could be considered as a promising biomaterial. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46688.  相似文献   

13.
The dianhydride monomer 3,3′,4,4′‐benzophenone tetracarboxylic acid dianhydride and two diamine monomers, 4,4′‐diamino‐3,3′‐biphenyldiol (HAB) and 2,4‐diaminophenol dihydrochloride (DAP), were used to synthesize a series of poly(hydroxyl amic acid). Further functionalization by grafting acrylate groups yields the corresponding poly(acrylate amic acid) that underwent a crosslinking reaction on exposure to UV‐light and was used as a negative‐tone photosensitive polyimide (PSPI). The analysis of chemical composition and molecular weight of these poly(amic acid)s determined by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography revealed that the molecular weight of the poly(hydroxyl amic acid) increased with the molar content of HAB in the feedstock, because HAB exhibited higher polymerization reactivity than DAP. Moreover, the degree of grafting acrylate groups onto poly(hydroxyl amic acid) was determined by 1H‐NMR spectroscopy. The photoresist was formulated by adding 2‐benzyl‐2‐N,N‐dimethylamino‐1‐(4‐morpholinophenyl) butanone (IRG369) and isopropylthioxanthone as a photoinitiator, tetra(ethylene glycol) diacrylate as a crosslinker, and tribromomethyl phenyl sulfone as a photosensitizer. The PSPI precursor exhibited a photosensitivity of 200 mJ/cm2 and a contrast of 1.78. A pattern with a resolution of 10 μm was observed in an optical micrograph after thermal imidization at 300°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The heat‐resistant copolymer of N‐phenylmaleimide (NPMI)–styrene (St)–maleic anhydride (MAH) was synthesized in xylene at 125°C with di‐tert‐butyl diperoxyterephthalate as an initiator. The characteristics of the copolymer were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR), gel permeation chromatography, and elemental analysis. The 13C‐NMR results show that the copolymer possessed random sequence distribution; this was also supported by the differential scanning calorimetry experiment, in which a single glass‐transition temperature (Tg) of 202.3°C was observed. The thermal stability and degradation mechanism of the copolymer were investigated by thermogravimetric analysis. Using the Kissinger equation and Ozawa equation, we proved a nucleation controlling mechanism with an apparent activation energy of 144 kJ/mol. Blends of acrylonitrile–butadiene–styrene with the NPMI–St–MAH copolymer with various contents were prepared with a twin‐screw extruder processes. The mechanical and thermal properties of the materials, such as the tensile and flexural strength, Tg's, and Vicat softening temperatures, were all enhanced with the addition of the modifier, whereas the melt flow index decreased. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
This paper reports on the cationic electron‐beam curing of a high‐functionality SU8 epoxy resin, which is extensively used as a UV‐curing negative photoresist for micro‐electronics machine systems (MEMS) applications. Results show that elevated post‐curing treatment significantly increased both the conversion and the glass transition. The degree of conversion and the glass transition temperature were measured by using Fourier‐transform infrared (FTIR) spectroscopy and modulated differential scanning calorimetry (MDSC®), respectively. The glass transition temperature (Tg), which has been observed to be dependent on the degree of conversion, reaches a maximum of 162 °C at 50 Mrad and post‐curing at 90 °C. The degradation pattern of the cured resin does not show much variation for exposure at 5 Mrad, but does show significant variation for 50 Mrad exposure at various post‐curing temperatures. A degree of conversion of more than 0.8 was achieved at a dosage of 30 Mrad with post curing at 80 °C, for the epoxy resin with an average functionality of 8 a feature simply not achievable when using UV‐curing. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
A series of new polymerized monomer reactants (PMR) matrix resins of poly(pyrrolone‐benzimidazole)s containing a pyridine unit (PPBP) were synthesized by polycondensation of monoethyl ester of cis‐5‐norbornene‐endo‐2,3‐dicarboxylic acid, 2,6‐diphenyl ester pyridinedicarboxylic acid or 3,5‐diphenyl ester pyridinedicarboxylic acid, and diethyl ester of 4,4′‐oxydiphthalic acid with 3,3′‐diaminobenzidine in a mixing solution of anhydrous ethyl alcohol and N‐methylpyrrolidone under given temperature and pressure conditions. The resulting resin solutions showed good solubility in polar organic solvents and stability at room temperature. The corresponding PPBP matrix resin, molded powder, and molded plate were prepared by undergoing amidation, imidization, cyclization, and crosslinking reactions when the reaction temperature was increased from 80 to 350°C, successively; the crosslinking structure was formed by the reverse Diels–Alder reaction at 270–290°C under 50 MPa pressure (2.5–3.5 MPa displayed by the pressure meter). The chemical reactions and properties of the resulting PPBP were studied by means of FTIR, TGA, and DMA methods, and the results indicated that the kinds of PPBP materials retain excellent thermal stability and processability; when the initial decomposition temperature was above 620°C the Tg was at 413.5°C for 3,5‐PPBP‐20 molded plate. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3981–3990, 2004  相似文献   

17.
PMR type poly(benzimidazopyrrolone‐imide) or poly(pyrrolone‐imide) (PPI) matrix resin was synthesized using the diethyl ester of 4,4′‐(hexafluoroisopropylidene)diphthalic acid (6FDE), 3,3′‐diaminobenzidine, para‐phenylenediamine, and monoethyl ester of cis‐5‐norbornene‐endo‐2,3‐dicarboxylic acid (NE) in anhydrous ethyl alcohol with N‐methylpyrrolidone. The homogeneous matrix resin solution (40–50% solid) was stable for a storage period of 2 weeks and showed good adhesion with carbon fibers, which ensured production of prepregs. The chemical and thermal processes in the polycondensation of the monomeric reactant mixture were monitored by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, etc. Thermosetting PPI as well as short carbon fiber‐reinforced polymer composites was accomplished at optimal thermal curing conditions. The polymer materials, after postcuring, showed excellent thermal stability, with an initial decomposition temperature > 540°C. Results of MDA experiments indicate that the materials showed > 70–80% retention of the storage modulus at 400°C and glass transition temperatures as high as 440–451°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1600–1608, 2001  相似文献   

18.
UV‐cured epoxy/graphene nanocomposite films with ca 100 µm thickness were manufactured by a facile cationic photopolymerization of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate mixtures including graphene sheets of 0.3 ? 10.0 wt%, which was initiated by triarylsulfonium hexafluoroantimonate salts. The microstructure and thermal and electrical properties of the UV‐cured epoxy/graphene nanocomposite films were investigated as a function of the graphene content. X‐ray diffraction patterns and TEM images confirm that graphene sheets are well dispersed in the UV‐cured epoxy resin matrix even with a high graphene content of 10.0 wt%. The electrical resistance of the nanocomposite films decreased dramatically from ca 1012 Ω to ca 102 Ω with increasing graphene content, especially at a percolation threshold of 2.0 ? 3.0 wt%. Accordingly, the UV‐cured nanocomposite films including 5.0 ? 10.0 wt% graphene showed excellent electric heating performance in terms of temperature response as well as electric power efficiency at a given applied voltage. For a nanocomposite film with 10.0 wt% graphene, the maximum temperature of ca 138 °C was attained at an applied voltage of 15 V and a high electric power efficiency of ca 3.0 ± 0.3 mW °C?1 was achieved. © 2014 Society of Chemical Industry  相似文献   

19.
In this paper we describe the synthesis, characterization, and lithographic evaluations of novel positive photoresists based on hydroxy polyimides and polyamides containing 6-F linking groups. The polymers were synthesized using solution condensation techniques and characterized using solution viscosity, GPC, FTIR, NMR, UV, TGA, and DSC. Tg's of these polymers range from 250 to 300°C. Both polyimides and polyamides are soluble in a variety of solvents commonly utilized for photoresist applications. When formulated with diazonaphthoquinone sensitizers, these polymers provide an improved high-temperature resistant, aqueous base developable positive photoresist system with good photospeed, contrast, and resolution characteristics. High resolution relief images were obtained which are comparable to 1300 Series AZ type photoresists. No thermal deformation, loss in resolution or defects were noticed when relief patterns were annealed to 250°C. Additionally, the hydroxy polyamide based resists, when thermally annealed to 300°C, provide a photoresist system with even higher thermal stability (400 to 450°C) and excellent resistance to solvents. Also, the photoresist formulations have excellent storage stability at room temperature and can be processed like conventional positive photoresists using broad band UV radiation sources.  相似文献   

20.
Interpenetrating polymer networks (IPNs) based on different ratios of a modified bismaleimide resin (BMI/DBA) and cyanate ester (b10) have been synthesized via prepolymerization followed by thermal curing. A systematic thermal degradation study of these new BMI/DBA‐CE IPN resin systems was conducted by thermogravimetric analysis at different heating rates both in N2 (thermal stability) and in air (thermal‐oxidative stability). The cured BMI/DBA‐CE IPN resin systems show excellent thermal stability, which could be demonstrated by 5% weight loss temperature (T5%) ranging between 409 and 423 °C, maximum decomposition rate temperature (Tmax) ranging between 423 and 451 °C, and the char yields at 800 °C ranging from 37% to 41% in nitrogen at a heating rate of 10 °C min?1. The apparent activation energy associated with the main degradation stage of the cured BMI/DBA‐CE IPN resin systems was determined using the Kissinger method. The obtained results provide useful information in drawing correlation between thermal properties and structure. © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号