首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Studied the gate finger number and gate length dependence on minimum noise figure (NF/sub min/) in deep submicrometer MOSFETs. A lowest NF/sub min/ of 0.93 dB is measured in 0.18-/spl mu/m MOSFET at 5.8 GHz as increasing finger number to 50 fingers, but increases abnormally when above 50. The scaling gate length to 0.13 /spl mu/m shows larger NFmin than the 0.18-/spl mu/m case at the same finger number. From the analysis of a well-calibrated device model, the abnormal finger number dependence is due to the combined effect of reducing gate resistance and increasing substrate loss as increasing finger number. The scaling to 0.13-/spl mu/m MOSFET gives higher NF/sub min/ due to the higher gate resistance and a modified T-gate structure proposed to optimize the NF/sub min/ for further scaling down of the MOSFET.  相似文献   

2.
Taking a velocity saturation effect and a carrier heating effect in the gradual channel region, complete thermal noise modeling of short-channel MOSFETs including the induced gate noise and its correlation coefficients is presented and verified extensively with experimentally measured data. All of the four noise models have excellently predicted experimental data with maximal error less than 10% for the deep-submicron MOSFETs. Using these models and a simultaneous matching technique for both optimal noise and power, a low noise CMOS amplifier optimized for 5.2-GHz operation has been designed and fabricated. Experiments using an external tuner show that both NF/sub 50/ and NF/sub min/ are very close to 1.1 dB, which is an excellent figure of merit among reported LNAs.  相似文献   

3.
A new equivalent circuit method is proposed in this paper to de-embed the lossy substrate and lossy pads' parasitics from the measured RF noise of multifinger MOSFETs with aggressive gate length scaling down to 80 nm. A new RLC network model is subsequently developed to simulate the lossy substrate and lossy pad effect. Good agreement has been realized between the measurement and simulation in terms of S-parameters and four noise parameters, NF/sub min/ (minimum noise figure), R/sub n/ (noise resistance), Re(Y/sub sopt/), and Im(Y/sub sopt/) for the sub-100-nm RF nMOS devices. The intrinsic NF/sub min/ extracted by the new de-embedding method reveal that NF/sub min/ at 10 GHz can be suppressed to below 0.8 dB for the 80-nm nMOS attributed to the advancement of f/sub T/ to 100-GHz level and the effectively reduced gate resistance by multifinger structure.  相似文献   

4.
We report a low minimum noise figure (NF/sub min/) of 1.1 dB and high associated gain (12 dB at 10 GHz) for 16 gate-finger 0.18-/spl mu/m RF MOSFETs, after thinning down the Si substrate to 30 /spl mu/m and mounting it on plastic. The device performance was improved by flexing the substrate to create stress, which produced a 25% enhancement of the saturation drain current and lowered NF/sub min/ to 0.92 dB at 10 GHz. These excellent results for mechanically strained RF MOSFETs on plastic compare well with 0.13-/spl mu/m node (L/sub g/=80 nm) devices.  相似文献   

5.
Bias-temperature instabilities (BTI) of HfO/sub 2/ metal oxide semiconductor field effect transistors (MOSFETs) have been systematically studied for the first time. NMOS positive BTI (PBTI) exhibited a more significant V/sub t/ instability than that of PMOS negative BTI (NBTI), and limited the lifetime of HfO/sub 2/ MOSFETs. Although high-temperature forming gas annealing (HT-FGA) improved the interface quality by passivating the interfacial states with hydrogen, BTI behaviors were not strongly affected by the technique. Charge pumping measurements were extensively used to investigate the nature of the BTI degradation, and it was found that V/sub t/ degradation of NMOS PBTI was primarily caused by charge trapping in bulk HfO/sub 2/ rather than interfacial degradation. Deuterium (D/sub 2/) annealing was found to be an excellent technique to improve BTI immunity as well as to enhance the mobility of HfO/sub 2/ MOSFETs.  相似文献   

6.
We report broadband microwave noise characteristics of a high-linearity composite-channel HEMT (CC-HEMT). Owing to the novel composite-channel design, the CC-HEMT exhibits high gain and high linearity such as an output third-order intercept point (OIP3) of 33.2 dBm at 2 GHz. The CC-HEMT also exhibits excellent microwave noise performance. For 1-/spl mu/m gate-length devices, a minimum noise figure (NF/sub min/) of 0.7 dB and an associated gain (G/sub a/) of 19 dB were observed at 1 GHz, and an (NF/sub mi/) of 3.3 dB and a G/sub a/ of 10.8 dB were observed at 10 GHz. The dependence of the noise characteristics on the physical design parameters, such as the gate-source and gate-drain spacing, is also presented.  相似文献   

7.
On the scaling limit of ultrathin SOI MOSFETs   总被引:1,自引:0,他引:1  
In this paper, a detailed study on the scaling limit of ultrathin silicon-on-insulator (SOI) MOSFETs is presented. Due to the penetration of lateral source/drain fields into standard thick buried oxide, the scale-length theory does not apply to thin SOI MOSFETs. An extensive two-dimensional device simulation shows that for a thin gate insulator, the minimum channel length can be expressed as L/sub min//spl ap/4.5(t/sub Si/+(/spl epsiv//sub Si///spl epsiv//sub I/)t/sub I/), where t/sub Si/ is the silicon thickness, and /spl epsiv//sub I/ and t/sub I/ are the permittivity and thickness of the gate insulator. With t/sub Si/ limited to /spl ges/ 2 nm from quantum mechanical and threshold considerations, a scaling limit of L/sub min/=20 nm is projected for oxides, and L/sub min/=10 nm for high-/spl kappa/ dielectrics. The effect of body doping has also been investigated. It has no significant effect on the scaling limit.  相似文献   

8.
AlGaAs/InGaAs MODFETs having 25% indium in the channel and L/sub G/=0.35 mu m have been fabricated. From DC device characterisation, a maximum saturation current of 670 mA/mm and an extrinsic transconductance of 500 mS/mm have been measured. A maximum unilateral gain cutoff frequency of f/sub c/=205 GHz and a maximum current gain cutoff frequency of f/sub T/=86 GHz have been achieved. Bias dependence of f/sub c/ and f/sub T/ has been measured. At 12 GHz a minimum noise figure of NF=0.8 dB and an associated gain of 11 dB have been measured.<>  相似文献   

9.
A very low minimum noise figure (NF/sub min/) of 1.2 dB and a high associated gain of 12.8 dB at 10 GHz were measured for six-finger, 0.18-/spl mu/m radio frequency (RF) metal-oxide semiconductor field-effect transistors mounted on insulating plastic following substrate-thinning (/spl sim/30 /spl mu/m) and wafer transfer. Before this process, the devices had a slightly better RF performance of 1.1-dB NF/sub min/ and a 13.7-dB associated gain. The small RF performance degradation of the active transistors transferred to plastic shows the potential of integrating electronics onto plastic.  相似文献   

10.
High-performance AlGaN/GaN high electron-mobility transistors with 0.18-/spl mu/m gate length have been fabricated on a sapphire substrate. The devices exhibited an extrinsic transconductance of 212 mS/mm, a unity current gain cutoff frequency (f/sub T/) of 101 GHz, and a maximum oscillation frequency (f/sub MAX/) of 140 GHz. At V/sub ds/=4 V and I/sub ds/=39.4 mA/mm, the devices exhibited a minimum noise figure (NF/sub min/) of 0.48 dB and an associated gain (Ga) of 11.16 dB at 12 GHz. Also, at a fixed drain bias of 4 V with the drain current swept, the lowest NFmin of 0.48 dB at 12 GHz was obtained at I/sub ds/=40 mA/mm, and a peak G/sub a/ of 11.71 dB at 12 GHz was obtained at I/sub ds/=60 mA/mm. With the drain current held at 40 mA/mm and drain bias swept, the NF/sub min/,, increased almost linearly with the increase of drain bias. Meanwhile, the Ga values decreased linearly with the increase of drain bias. At a fixed bias condition (V/sub ds/=4 V and I/sub ds/=40 mA/mm), the NF/sub min/ values at 12 GHz increased from 0.32 dB at -55/spl deg/C to 2.78 dB at 200/spl deg/C. To our knowledge, these data represent the highest f/sub T/ and f/sub MAX/, and the best microwave noise performance of any GaN-based FETs on sapphire substrates ever reported.  相似文献   

11.
AlGaN-GaN high-electron mobility transistors (HEMTs) based on high-resistivity silicon substrate with a 0.17-/spl mu/m T-shape gate length are fabricated. The device exhibits a high drain current density of 550 mA/mm at V/sub GS/=1 V and V/sub DS/=10 V with an intrinsic transconductance (g/sub m/) of 215 mS/mm. A unity current gain cutoff frequency (f/sub t/) of 46 GHz and a maximum oscillation frequency (f/sub max/) of 92 GHz are measured at V/sub DS/=10 V and I/sub DS/=171 mA/mm. The radio-frequency microwave noise performance of the device is obtained at 10 GHz for different drain currents. At V/sub DS/=10 V and I/sub DS/=92 mA/mm, the device exhibits a minimum-noise figure (NF/sub min/) of 1.1 dB and an associated gain (G/sub ass/) of 12 dB. To our knowledge, these results are the best f/sub t/, f/sub max/ and microwave noise performance ever reported on GaN HEMT grown on Silicon substrate.  相似文献   

12.
High-/spl kappa/ Al/sub 2/O/sub 3//Ge-on-insulator (GOI) n- and p-MOSFETs with fully silicided NiSi and germanided NiGe dual gates were fabricated. At 1.7-nm equivalent-oxide-thickness (EOT), the Al/sub 2/O/sub 3/-GOI with metal-like NiSi and NiGe gates has comparable gate leakage current with Al/sub 2/O/sub 3/-Si MOSFETs. Additionally, Al/sub 2/O/sub 3/-GOI C-MOSFETs with fully NiSi and NiGe gates show 1.94 and 1.98 times higher electron and hole mobility, respectively, than Al/sub 2/O/sub 3/-Si devices, because the electron and hole effective masses of Ge are lower than those of Si. The process with maximum 500/spl deg/C rapid thermal annealing (RTA) is ideal for integrating metallic gates with high-/spl kappa/ to minimize interfacial reactions and crystallization of the high-/spl kappa/ material, and oxygen penetration in high-/spl kappa/ MOSFETs.  相似文献   

13.
We have fabricated the fully silicided NiSi on La/sub 2/O/sub 3/ for n- and p-MOSFETs. For 900/spl deg/C fully silicided CoSi/sub 2/ on La/sub 2/O/sub 3/ gate dielectric with 1.5 nm EOT, the gate dielectric has large leakage current by possible excess Co diffusion at high silicidation temperature. In sharp contrast, very low gate leakage current density of 2/spl times/10/sup -4/ A/cm/sup 2/ at 1 V is measured for 400/spl deg/C formed fully silicided NiSi and comparable with Al gate. The extracted work function of NiSi was 4.42 eV, and the corresponding threshold voltages are 0.12 and -0.70 V for respective n- and p-MOSFETs. Electron and hole mobilities of 156 and 44 cm/sup 2//V-s are obtained for respective n- and p-MOSFETs, which are comparable with the HfO/sub 2/ MOSFETs without using H/sub 2/ annealing.  相似文献   

14.
Low-frequency noise characteristics are reported for TaSiN-gated n-channel MOSFETs with atomic-layer deposited HfO/sub 2/ on thermal SiO/sub 2/ with stress-relieved preoxide (SRPO) pretreatment. For comparison, control devices were also included with chemical SiO/sub 2/ resulting from standard Radio Corporation of America clean process. The normalized noise spectral density values for these devices are found to be lower when compared to reference poly Si gate stack with similar HfO/sub 2/ dielectric. Consequently, a lower oxide trap density of /spl sim/4/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ is extracted compared to over 3/spl times/10/sup 18/ cm/sup -3/eV/sup -1/ values reported for poly Si devices indicating an improvement in the high-/spl kappa/ and interfacial layer quality. In fact, this represents the lowest trap density values reported to date on HfO/sub 2/ MOSFETs. The peak electron mobility measured on the SRPO devices is over 330 cm/sup 2//V/spl middot/s, much higher than those for equivalent poly Si or metal gate stacks. In addition, the devices with SRPO SiO/sub 2/ are found to exhibit at least /spl sim/10% higher effective mobility than RCA devices, notwithstanding the differences in the high-/spl kappa/ and interfacial layer thicknesses. The lower Coulomb scattering coefficient obtained from the noise data for the SRPO devices imply that channel carriers are better screened due to the presence of SRPO SiO/sub 2/, which, in part, contributes to the mobility improvement.  相似文献   

15.
We have investigated the effect of substrate biasing on the subthreshold characteristics and noise levels of Si/Si/sub 1-x/Ge/sub x/ (x=0,0.15,0.3) heterostructure MOSFETs. A detailed analysis of the dependence of threshold voltage, off-state current, and low-frequency noise level on the substrate-source (V/sub bs/) biasing showed that SiGe heterostructure MOSFETs offer a significant speed advantage, an extended subthreshold operation region, a reduced noise level, and reduced bulk potential sensitivity compared to Si bulk devices. These experimental results demonstrate that SiGe heterostructure MOSFETs render a promising extension to the CMOS technologies at the low-power limit of operation, eventually making the micropower implementation of radio frequency (RF) functions feasible.  相似文献   

16.
We report on the dc and RF characterization of laterally scaled, Si-SiGe n-MODFETs. Devices with gate length, L/sub g/, of 80 nm had f/sub T/=79 GHz and f/sub max/=212 GHz, while devices with L/sub g/=70 nm had f/sub T/ as high as 92 GHz. The MODFETs displayed enhanced f/sub T/ at reduced drain-to-source voltage, V/sub ds/, compared to Si MOSFETs with similar f/sub T/ at high V/sub ds/.  相似文献   

17.
In this letter, we developed an improved ultrafast measurement method for threshold voltage V/sub th/ measurement of MOSFETs. We demonstrate I/sub d/--V/sub g/ curve measurement within 1 /spl mu/s to extract the threshold voltage of MOSFET. Errors arising from MOSFET parasitics and measurement setup are analyzed quantitatatively. The ultrafast V/sub th/ measurement is highly needed in the investigation of gate dielectric charge trapping effect when traps with short detrapping time constants are present. Application in charge trapping measurement on HfO/sub 2/ gate dielectric is demonstrated.  相似文献   

18.
Principles of operation of implant-free enhancement-mode MOSFETs (flatband MOSFET) are discussed. Epitaxial-layer structures designed for use in implant-free enhancement-mode devices and employing a high-/spl kappa/ dielectric (/spl kappa//spl cong/20) and a strained InGaAs channel layer with a thickness of 10 nm have been manufactured on GaAs substrate. Proceeding from measured electron mobility /spl mu/ as a function of the sheet-carrier concentration, enhancement-mode design considerations, saturation current I/sub Dss/, and mobility requirements are discussed using two-dimensional device simulations. For the flatband MOSFET to compete successfully with other device designs, certain minimum channel mobilities are required. For RF applications, /spl mu/ should exceed 5000 cm/sup 2//Vs while high-performance MOSFETs for digital applications may require even higher mobility for optimum operation. Finally, measured data of first 1-/spl mu/m-GaAs-flatband enhancement-mode MOSFETs are presented; the saturation velocity of the InGaAs channel layer is derived; and measured I/sub Dss/ data are compared to the results obtained by simulations.  相似文献   

19.
Si-SiO/sub 2/ interface trap densities can be measured in MOS structures with ultrathin oxides using charge pumping (CP) and small gate pulses. This presents three decisive advantages with respect to the conventional large gate voltage swing approach. First, the extraction is simple as carrier emission does not contribute to the CP signal so that the CP current magnitude directly reflects the interface trap density. Second, the tunneling current is strongly reduced allowing a more easy extraction of the CP signal and third, such a reduction prevents the insulator and the insulator-silicon interface from any degradation. By doing so, Si-SiO/sub 2/ interface trap densities are measured in MOSFETs with oxides which are 1.8 and 1.3 nm thick.  相似文献   

20.
The variable rise and fall time charge-pumping technique has been used to determine the energy distribution of interface trap density (D/sub it/) in MOSFETs with a HfO/sub 2/ gate dielectric grown on an ultrathin (<1 nm)-SiON buffer layer on Si. Our results have revealed that the (D/sub it/) is higher in the upper half of the bandgap than in the lower half of the bandgap, and are consistent with qualitative results obtained by the subthreshold current-voltage (I--V) measurements, capacitance-voltage (C-V), and ac conductance techniques. These results are also consistent with the observation that n-channel mobilities are more severely degraded than p-channel mobilities when compared to conventional MOSFETs with SiO/sub 2/ or SiON as the gate dielectric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号