首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partial dehydrogenation of fuels like diesel or kerosene cuts to produce H2 is an emerging idea of increasing interest. In the present work the study of the partial dehydrogenation of Jet A-1 fuel on Pt-Sn/γ-Al2O3 based catalysts to produce H2 to feed an on-board (aircraft) proton exchange membrane fuel cell is presented. Extensive physico-chemical characterization of 5% wt.Pt-1% wt.Sn/γ-Al2O3 and 5%wt.Pt-1%wt.Sn-1%wt.Na/γ-Al2O3 pelleted materials has been performed. A gradient of the active metals from the edge to the centre of the pellet has been observed. A higher concentration of Pt0 has been detected on the outer part of the pellet than in the inner part, whereas Sn has been detected only on the external part of the pellet. The investigated materials are active as catalysts for the partial dehydrogenation of normal and desulfurised Jet A-1 kerosene fuel. The presence of sulfur compounds and coke deposition strongly affects the H2 productivity which decreases rapidly with time on stream. The presence of a Na cation addition contributes to give the highest and most sustained H2 production. The condensed outlet liquid stream retains the fuel properties in the range of the Jet A-1 kerosene fuel. These are encouraging preliminary results, inviting further research; coking and sulfur poisoning as well as identification of appropriate reaction conditions are the main challenges to be overcome in the immediate future.  相似文献   

2.
Hydrogen is an ideal energy carrier and can play a very important role in the energy system. The present study investigated the enhancement of hydrogen production from catalytic dry reforming process. Two catalysts namely Ni/γ-Al2O3 and Co/γ-Al2O3 promoted with different amounts of strontium were used to explore selectivity and yield of hydrogen production. Spent and fresh catalysts were characterized using techniques such as BET, XRD, H2-TPR, CO2-TPD, TGA and O2-TPO. The catalyst activity and characterization results displayed stability improvement due to addition of Sr promoter. The least coke formations i.e. 3.8 wt% and 5.1 wt% were obtained using 0.75 wt% Sr doped in Ni/γ-Al2O3 and 0.5 wt% Sr doped in Co/γ-Al2O3 catalysts respectively. Time on stream tests of promoted catalysts for about six hours at 700 °C showed stable hydrogen selectivity. Moreover, the hydrogen selectivity was significantly improved by the addition of Sr in Ni and Co based catalysts. For instance the hydrogen selectivity increased from 45.9% to 47.8% for Ni/γ-Al2O3 and from 48% to 50.9% for Co/γ-Al2O3 catalyst by the addition of 0.75 wt% Sr in Ni/γ-Al2O3 and 0.5 wt% Sr in Co/γ-Al2O3 catalyst respectively.  相似文献   

3.
Nickel catalysts (10wt.%) supported on MgAl2O4 and γ-Al2O3 were prepared by the wet impregnation method and promoted with various contents of Ce0.75Zr0.25O2. X-ray diffraction (XRD), BET surface area, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), H2-temperature programmed reduction (TPR) and CO2-temperature programmed desorption (TPD) were employed to observe the characteristics of the prepared catalysts. Ni/γ-Al2O3 and Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 showed better activity in CO2 methane reforming with 75.7(0.93) and 75.4(0.82) CH4 conversions (and H2/CO ratio). H2O was added to feed in the range of H2O/(CH4 + CO2): 0.1–0.5 to suppress reverse water gas shift (RWGS) effect and adjusting H2/CO ratio. The CH4 conversions (and H2/CO) increased to 81(1.1) with 0.5 water/carbon mole ratio in Ni/γ-Al2O3 and 85(1.2) with 0.2 water/carbon mole ratio in Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4. The stability of Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 in the presence and absence of water was investigated. Coke formation and amount in used catalysts were examined by SEM and TGA, respectively. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3%) was observed in the presence of 0.2 water/carbon mole ratio over Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 catalyst.  相似文献   

4.
In total 17 heterogeneous catalysts, with combinations of 4 transition metals (Ni, Ru, Cu and Co) and various promoters (e.g., Na, K, Mg, or Ru) supported on different materials (γ-Al2O3, ZrO2, and activated carbon (AC)), were investigated with respect to their catalytic activity and stability for H2 production from glucose via supercritical water gasification (SCWG). The experiments were carried out at 600 °C and 24 MPa in a bench-scale continuous-flow tubular reactor. Ni (in metallic form) and Ru (in both metallic and oxidized forms) supported on γ-Al2O3 exhibited very high activity and H2 selectivity among all of the catalysts investigated for a time-on-stream of 5-10 h. With Ni20/γ-Al2O3 (i.e., γ-Al2O3 with 20 wt% Ni), a H2 yield of 38.4 mol/kg glucose was achieved, approximately 20 times higher than that obtained during the blank test without catalyst (1.8 mol/kg glucose). In contrast, Cu and Co catalysts were much less effective for glucose SCWG reactions. As for the effects of catalyst support materials on activity, the following order of sequence was observed: γ-Al2O3 > ZrO2 > AC. In addition, Mg and Ru were found to be effective promoters for the Ni/γ-Al2O3 catalyst, suppressing coke and tar formation.  相似文献   

5.
Ni, Co and bimetallic Ni–Co catalysts supported on Ca-γ-Al2O3 and ZrO2 were investigated for the production of hydrogen via ethanol steam reforming (ESR). Catalysts were prepared by wet impregnation method and characterized using temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). ESR and temperature-programmed desorption of ethanol (ethanol-TPD) were carried out in a continuous flow fixed bed micro-reactor and the outlet gases were monitored by an on-line GC or MS. Ni is found to be more active for the C–C bond rupture than Co on both supports, Ca-γ-Al2O3 and ZrO2. Catalyst support plays very important roles for the ESR. Strong interaction between support and metal affects the formation of NiCo bimetallic compound, resulting in the variety of catalytic activity. On Ca-γ-Al2O3 support, the catalytic activity of ESR follows the sequence of 10%Ni > 6.7%Ni 3.3%Co ∼ 3.3%Ni 6.7%Co > 10%Co. On ZrO2, the trend is 10%Ni > 6.7%Ni 3.3%Co > 10%Co > 3.3%Ni 6.7%Co. The H2O adsorption/activation ability of the support determines the reaction pathway and thus the product selectivity. On Ca-γ-Al2O3, water gas shift reaction is more favorable than on ZrO2, due to the availability of surface OH groups. The roles of the metal and support for ESR are also discussed.  相似文献   

6.
Cu–Ni/γ-Al2O3 catalysts with different metal contents for dimethyl ether steam reforming (DME SR) were prepared by the method of deposition–precipitation. Characterization of specific surface area measurement (BET), X-ray diffraction (XRD) and hydrogen temperature-programmed reduction (H2-TPR) revealed that nickel improved the dispersion of copper, increased the interaction between copper and γ-Al2O3, and therefore, inhibited the sintering of copper. Ammonia temperature-programmed desorption (NH3-TPD) showed that metal particles could occupy the acid sites, leading to the decrease in acid amount and acid strength of Cu–Ni/γ-Al2O3 catalyst. Kinetic measurements indicated that γ-Al2O3 is vital for DME SR and a higher content of γ-Al2O3 in catalyst was needed. The addition of nickel suppressed the water gas shift (WGS) reaction. Initial durability testing showed that the conversion of DME over Cu–Ni/γ-Al2O3 catalyst was always almost complete during the 30 h experimental reaction time. Therefore, Cu–Ni/γ-Al2O3 could be a potential DME SR catalyst for the production of hydrogen.  相似文献   

7.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

8.
Autothermal reforming (ATR) of iso-octane in the presence of Rh-based catalysts (0.5 wt% of Rh) supported onto γ-Al2O3, CeO2, and ZrO2 were initially carried out at 700 °C with a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h−1. The activity of Rh/γ-Al2O3 was found to be higher than Rh/CeO2 and Rh/ZrO2, with H2 and (H2 + CO) yields of 1.98 and 2.48 mol/mol C, respectively, after 10 h. This Rh/γ-Al2O3 material, however, was potentially susceptible to carbon coking and produced 3.5 wt% of carbon deposits following the reforming reaction, as evidenced by C, H, N, and S elemental analysis. In contrast, Rh/CeO2 catalyst exhibited lower activity but higher stability than Rh/γ-Al2O3, with nearly no carbon being formed within 10 h. To combine the superior activity originated from Rh/γ-Al2O3 with high stability from Rh/CeO2, Rh/CeO2/γ-Al2O3 catalysts with different CeO2 contents were synthesized and examined for the ATR reactions of iso-octane. Compared to Rh/γ-Al2O3, the newly prepared Rh/CeO2/γ-Al2O3 catalysts (0.5 wt% of Rh and 20 wt% of CeO2) showed even enhanced activity during 10 h, and H2 and (H2 + CO) yields were calculated to be 2.08 and 2.62 mol/mol C, respectively. In addition, as observed with Rh/CeO2, the catalyst was further found to be stable with less than 0.3 wt% of carbon deposition after 10 h. The Rh/γ-Al2O3 and Rh/CeO2/γ-Al2O3 catalysts were eventually tested for ATR reactions using commercial gasoline that contained sulfur, aromatics, and other impurities. The Rh/γ-Al2O3 catalyst was significantly deactivated, showing decreased activity after 4 h, while the Rh/CeO2/γ-Al2O3 catalyst proved to be excellent in terms of stability against coke formation as well as activity towards the desired reforming reaction, maintaining its ability for H2 production for 100 h.  相似文献   

9.
Ni/γ-Al2O3 catalyst was prepared by direct treatment of Ni(NO3)2/γ-Al2O3 precursor with dielectric barrier discharge (DBD) hydrogen plasma at different input powers, characterized by XRD, H2-TPR, CO2-TPD, N2 adsorption and TEM, respectively, and used as the catalyst for CO2 reforming of methane (CRM). The results showed that the input power obviously affected the reduction degree and catalytic performances of catalysts. Low input power under 40 W mainly resulted in the decomposition of nickel nitrate into Ni oxides. The reduction degree, catalytic activity and stability increase with the input power. Similar catalytic performances in CRM reaction can be obtained when the power exceeds 80 W. Compared with the Ni/Al2O3 catalyst prepared by traditional method, Ni/γ-Al2O3 samples prepared by H2 DBD plasma exhibit better activities, stability and anti-carbon deposit performances. It is mainly ascribed to smaller Ni particle size, more basic sites and weaker basicity. The increase of Ni particle sizes due to the sintering at high temperature results in the decrease of catalytic activities and coke formation.  相似文献   

10.
In this work, the hydriding–dehydriding properties of the LiBH4–NbF5 mixtures were investigated. It was found that the dehydrogenation and reversibility properties of LiBH4 were significantly improved by NbF5. Temperature-programed dehydrogenation (TPD) showed that 5LiBH4–NbF5 sample started releasing hydrogen from as low as 60 °C, and 4 wt.% hydrogen could be obtained below 255 °C. Meanwhile, ∼7 wt.% H2 could be reached at 400 °C in 20LiBH4–NbF5 sample, whereas pristine LiBH4 only released ∼0.7 wt.% H2. In addition, reversibility measurement demonstrated that over 4.4 wt.% H2 could still be released even during the fifth dehydrogenation in 20LiBH4–NbF5 sample. The experimental results suggested that a new borohydride possibly formed during ball milling the LiBH4–NbF5 mixtures might be the source of the active effect of NbF5 on LiBH4.  相似文献   

11.
Nickel supported γ-alumina (Ni/γ-Al2O3) catalysts are well-known to be highly active on the autothermal reforming of methane, but to be unstable due to coke deposition. Cerium oxide (CeO2) is one of promising promoter to overcome the fast deactivation of nickel-based catalysts by coke formation. Herein, catalytic behavior of CeO2 over Ni/γ-Al2O3 catalysts on the autothermal reforming of methane was investigated. The catalytic activity was maintained for 100 h with H2/CO molar ratio of 1.9. The formation of CeAlO3 is observed at the reduction and reaction conditions. In this work, it was found that the formation of CeAlO3 promoted the catalytic oxidation toward CO2 and prevented the formation of α-Al2O3 and nickel-aluminate, resulting in stable activity for autothermal reforming of methane.  相似文献   

12.
The effects of Y2O3-modification to Ni/γ-Al2O3 catalysts on autothermal reforming of methane to syngas were investigated. It was found that the introduction of Y2O3 (5%, 8%, 10%) lead to significant improvement in catalytic activity and stability, and the H2/CO ratio could be adjusted via controlling the O2/CO2 ratio of the feed gas. According to the characterization results of catalysts before and after reaction, it was found that the Y2O3·γ-Al2O3 supported Ni catalysts had higher NiO reducibility, smaller Ni particle size, higher Ni dispersion and stronger basicity than those of the Ni/γ-Al2O3 catalysts. The analysis of catalysts after reaction showed that the addition of Y2O3 inhibited the Ni sintering, changed the type of coke and decreased the amount of coke on the catalysts. All the experimental results indicated that the introduction of Y2O3 to Ni/γ-Al2O3 resulted in excellent catalytic performances in autothermal reforming of methane, and Y2O3 played important roles in preventing metal sintering and coke deposition via controlling NiO reducibility, Ni particle size and dispersion, and basicity of catalysts.  相似文献   

13.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

14.
The study first investigated the modification effect of natural mixed rare earths (MRE) on cobalt catalysts for CH4/CO2 reforming to synthesis gas. The Co/γ-Al2O3 catalysts modified with the natural mixed rare earths were synthesized by the impregnation method, and characterized via ICP, BET, XRD, H2-TPR, TEM and TG–DSC techniques. The result showed that the addition of mixed rare earths enhanced the anti-sintering ability of metallic cobalt after reduction and improved anti-coke performance of the catalysts via the synergic effect of mixed rare earths. The 20% Co/γ-Al2O3 catalyst promoted by the appropriate natural mixed rare earths exhibited good activity and stability with low carbon formation at 800 °C for 320 h reaction.  相似文献   

15.
A 2LiBH4–MgH2–MoS2 composite was prepared by solid-state ball milling, and the effects of MoS2 as an additive on the hydrogen storage properties of 2LiBH4–MgH2 system together with the corresponding mechanism were investigated. As shown in the TG–DSC and MS results, with the addition of 20 wt.% of MoS2, the onset dehydrogenation temperature is reduced to 206 °C, which is 113 °C lower than that of the pristine 2LiBH4–MgH2 system. Meanwhile, the total dehydrogenation amount can be increased from 9.26 wt.% to 10.47 wt.%, and no gas impurities such as B2H6 and H2S are released. Furthermore, MoS2 improves the dehydrogenation kinetics, and lowers the activation energy (Ea) 34.49 kJ mol−1 of the dehydrogenation reaction between Mg and LiBH4 to a value lower than that of the pristine 2LiBH4–MgH2 sample. According to the XRD test, Li2S and MoB2 are formed by the reaction between LiBH4 and MoS2, which act as catalysts and are responsible for the improved hydrogen storage properties of the 2LiBH4–MgH2 system.  相似文献   

16.
The in situ deposition of 1.5 wt.% Ru/γ-Al2O3 catalytic layers on cordierite monoliths (400 cpsi, diameter 1 cm, length 1.5 cm), combining Solution Combustion Synthesis (SCS) with Wet Impregnation (WI), was addressed. First of all, the physicochemical properties of the catalyst at powder level were investigated by X-ray Diffraction (XRD), N2 adsorption (BET), and H2 chemisorption, while the morphology of final structured catalysts was evaluated by SEM analysis and mechanical strength tests by sonication. The catalytic activity towards methane Oxy-Steam Reforming (OSR) reaction was studied after the choice of the most suitable catalyst load, carrying out tests varying the temperature (500–800 °C), the oxygen-to-carbon ratio (O/C = 0.45–0.75, oxygen as moles), the steam-to-carbon ratio (S/C = 1.0–2.4), and the weight space velocity (WSV = 34,000–400,000 N ml gcat−1 h−1), in order to identify the optimum operative conditions. The results showed that a total catalytic layer load (active metal plus oxide carrier) equal to 6.5 mg cm−2 was enough to achieve excellent performances, while no substantial improvements were obtained at higher catalytic layer loads. Moreover, the coated Ru/γ-Al2O3 monolith exhibited a good catalytic activity towards the studied reaction also at considerably high WSV values (till 400,000 N ml gcat−1 h−1).  相似文献   

17.
Highly dispersed Pt/γ-Al2O3 catalysts were prepared by deposition–precipitation (DP) method with precursor solutions of various pH. The pH was controlled from 6.5 to 9.5 with 5 wt% NaOH solution. As the pH of precursor solution increases over pH 7.5, the metal dispersion and surface PtOx species decrease and the Pt particle size increases. PrOx test was carried out with a space velocity of 60,000 mL/h gcat in temperature ranges from 100 to 200 °C. The [O2]/[CO] ratio was adjusted between 1 and 2 and the effect of H2O and CO2 was examined at [O2]/[CO] = 2. It is interesting that the CO conversion has good agreement with the Pt metal dispersion. In addition, highly dispersed Pt/γ-Al2O3 catalyst prepared by DP with pH 7.5 exhibited good catalytic activity below 150 °C in PrOx due to the improvement of the metal dispersion and reducibility of surface PtOx species at low temperatures compared with the catalyst prepared by impregnation method.  相似文献   

18.
To improve nanoconfinement of LiBH4 and MgH2 in carbon aerogel scaffold (CAS), particle size reduction of MgH2 by premilling technique before melt infiltration is proposed. MgH2 is premilled for 5 h prior to milling with LiBH4 and nanoconfinement in CAS to obtained nanoconfined 2LiBH4–premilled MgH2. Significant confinement of both LiBH4 and MgH2 in CAS, confirmed by SEM–EDS–mapping results, is achieved due to MgH2 premilling. Due to effective nanoconfinement, enhancement of CAS:hydride composite weight ratio to 1:1, resulting in increase of hydrogen storage capacity, is possible. Nanoconfined 2LiBH4–premilled MgH2 reveals a single–step dehydrogenation at 345 °C with no B2H6 release, while dehydrogenation of nanoconfined sample without MgH2 premilling performs in multiple steps at elevated temperatures (up to 430 °C) together with considerable amount of B2H6 release. Activation energy (EA) for the main dehydrogenation of nanoconfined 2LiBH4–premilled MgH2 is considerably lower than those of LiBH4 and MgH2 of bulk 2LiBH4–MgH2EA = 31.9 and 55.8 kJ/mol with respect to LiBH4 and MgH2, respectively). Approximately twice faster dehydrogenation rate are accomplished after MgH2 premilling. Three hydrogen release (T = 320 °C, P(H2) = 3–4 bar) and uptake (T = 320–325 °C, P(H2) = 84 bar) cycles of nanoconfined 2LiBH4–premilled MgH2 reveal up to 4.96 wt. % H2 (10 wt. % H2 with respect to hydride composite content), while the 1st desorption of nanoconfined sample without MgH2 premilling gives 4.30 wt. % of combined B2H6 and H2 gases. It should be remarked that not only kinetic improvement and B2H6 suppression are obtained by MgH2 premilling, but also the lowest dehydrogenation temperature (T = 320 °C) among other modified 2LiBH4–MgH2 systems is acquired.  相似文献   

19.
The purpose of this study is to investigate the effects of mixing three kinds of zeolites (MFI, MOR, and BEA) with the dimethyl ether steam reforming(DME-SR) Cu/γ-Al2O3 catalyst to improve H2 yield at low temperatures, and to identify the de-NOx performance of a combined system of SR catalyst and Lean NOx Trap(LNT). The SR catalyst was prepared by the impregnation method, and a commercialized LNT catalyst was used. The SR reaction experiment was conducted to investigate the effect of the coexistence of CO2, O2, NO, and NO2 among the exhaust gases of the DME engine on the H2 yield. The study found that the proper mixing of Cu/γ-Al2O3 and zeolite increased the H2 yield at low temperature improving DME hydrolysis. The variation in the H2 yield according to the kinds of zeolite in the SR catalyst was due to the characteristics of zeolite. The Cu10/γ-Al2O3 catalyst mixed with 10% MOR showed the highest H2 yield. A combined system of SR and LNT uses the H2 generated mainly from the Cu-based catalyst using the DME-SR reaction for the LNT. When H2 generated from the SR (Cu10/γ-Al2O3 + MOR10) catalyst was used as the reductant of LNT, the NOx conversion at 350 °C or below was improved up to 15% compared to when DME was used. This demonstrates that H2 as the reductant of LNT is more beneficial than DME. The H2 generated from the SR catalyst can be used as the reductant of LNT in an after-treatment system. Meanwhile, the SR catalyst that was mixed with zeolite caused the carbon deposition, but the combined system of SR + LNT caused no carbon deposition because the carbon deposited on the SR catalyst reacted with O2 during the lean-operating period.  相似文献   

20.
Steam reforming of acetic acid on Ni/γ-Al2O3 with different nickel loading for hydrogen production was investigated in a tubular reactor at 600 °C, 1 atm, H2O/HAc = 4, and WHSV = 5.01 g-acetic acid/g-cata.h?1. The catalysts were characterized by temperature programmed oxidation (TPO) and differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that the amount of deposited carbidic-like carbon decreased and graphitic-like carbon increased with Ni loading increasing from 9 to 15 wt%. The Ni/γ-Al2O3 catalyst with 12 wt% Ni loading had higher catalytic activity and lower coke deposited rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号