首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

2.
A series of nickel-based catalyst supported on silica (Ni/SiO2) with different loading of Ce/Ni (molar ratio ranging from 0.17 to 0.84) were prepared using conventional co-impregnation method and were applied to synthesis gas production in the combination of CO2 reforming with partial oxidation of methane. Among the cerium-containing catalysts, the cerium-rich ones exhibited the higher activity and stability than the cerium-low ones. The temperature-programmed reduction (TPR) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) analysis revealed that the addition of CeO2 reduced the chemical interaction between Ni and support, resulting in an increase in reducibility and dispersion of Ni. Over NiCe-x/SiO2 (x = 0.17, 0.50, 0.67, 0.84) catalysts, the reduction peak in TPR profiles shifted to the higher temperature with increasing Ce/Ni molar ratio, which was attributed to the smaller metallic nickel size of the reduced catalysts. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) for the post-reaction catalysts confirmed that the promoter retained the metallic nickel species and prevented the metal particle growth at high reaction temperature. The NiCe-0.84/SiO2 catalyst with small Ni particle size exhibited the stable activity with the constant H2/CO molar ratio of 1.2 during 6-h reaction in the combination of CO2 reforming with partial oxidation of methane at 850 °C and atmospheric pressure.  相似文献   

3.
Mesoporous Ni-La-Al2O3 aerogel catalysts (denoted as (40-x)NixLa) with different lanthanum content (x) were prepared by a single-step sol-gel method and a subsequent CO2 supercritical drying method. The effect of lanthanum content on the physicochemical properties and catalytic performance of mesoporous (40-x)NixLa catalysts in the steam reforming of liquefied natural gas (LNG) was investigated. Physicochemical properties of (40-x)NixLa catalysts were strongly influenced by lanthanum content. Dispersion and reducibility of nickel aluminate phase in the (40-x)NixLa catalysts increased with increasing lanthanum content. Small amount of lanthanum addition was effective for dispersion of metallic nickel in the (40-x)NixLa catalysts, but large amount of lanthanum addition was not favorable for nickel dispersion due to the blocking of active sites. In the steam reforming of LNG, both LNG conversion and hydrogen yield showed volcano-shaped curves with respect to lanthanum content. Average nickel diameter of (40-x)NixLa catalysts was well correlated with LNG conversion and hydrogen yield over the catalysts. Among the catalysts tested, 36Ni4La (36 wt% Ni and 4 wt% La) catalyst with the smallest average nickel diameter exhibited the best catalytic performance and the strongest resistance toward carbon deposition in the steam reforming of LNG.  相似文献   

4.
The steam reforming of glycerol over supported nickel catalysts is a promising and cost-effective method for producing hydrogen. The activity of nickel catalysts supported on γ-Al2O3 is low, primarily due to the formation of inactive nickel species during high temperature calcination in air. In order to address this problem, a Ni/γ-Al2O3 catalyst was prepared by calcination at 700 °C in a nitrous oxide (N2O) environment. The N2O calcined catalyst showed an enhanced activity for the steam reforming of glycerol. A variety of characterization techniques (XRD, TPR, XPS and H2 Chemisorption) confirmed that the high temperature N2O calcination resulted in a significant decrease in the levels of nickel aluminate. The N2O calcination also led to an enhancement in the amount of NiO as well as nickel ions present on the surface of the catalyst. Interestingly, compared to an air calcined catalyst, the N2O calcined catalyst contained larger nickel particles after reduction but the N2O calcined catalyst had a much larger nickel surface area and dispersion, which resulted in higher glycerol conversion and hydrogen yield.  相似文献   

5.
A series of LaNi1−xFexO3 (x = 0.0, 0.2, 0.4, 0.7, and 1.0) perovskites were synthesized and characterized by X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), H2-temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The perovskites were investigated for selective catalytic reduction of NOx by hydrogen (H2-SCR). It is shown that Fe addition into LaNiO3 leads to a promoted efficiency of NOx removal, as well as a high stability of perovskite structure. Moreover, easy reduction of Ni3+ to Ni2+ with the aid of appropriate Fe component mainly accounts for the enhanced activity. Meanwhile, deactivation of the sulfated catalysts is due to that sulfates mainly deposit on active Ni component while doping of Fe can protect Ni to some extent at the expense of partial sulfation.  相似文献   

6.
Nanocrystalline calcium aluminate (CaO.2Al2O3) was prepared by a simple co-precipitation method using Poly (ethylene glycol)-block-poly(propylene glycol)-block poly(ethylene glycol) (PEG-PPG-PEG, MW:5800) as surfactant and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), Temperature programmed reduction and oxidation (TPR-TPO) and Scanning electron microscopy (SEM) techniques. The results showed that the prepared support has a high potential as support for nickel catalysts in methane reforming with carbon dioxide. The results showed high catalytic activity and stability for the prepared catalysts. Among the prepared catalysts 15% Ni/CaO.2Al2O3 was the most active catalyst and showed the highest affinity for carbon formation. In addition, 7% Ni/CaO.2Al2O3 possessed high catalytic stability during 50 h time on stream. The TPO analysis revealed that increasing in nickel content increased the amount of deposited carbon over the spent catalysts. SEM results detected only whisker type of carbon for all spent catalysts.  相似文献   

7.
A novel nickel catalyst supported on Al2O3@ZrO2 core/shell nanocomposites was prepared by the impregnation method. The core/shell nanocomposites were synthesized by depositing zirconium species on boehmite nanofibres. This contribution aims to study the effects of the pore structure of supports and the zirconia dispersed on the surface of the alumina nanofibres on the CO methanation. The catalysts and supports were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). The catalytic performance of the catalysts for CO methanation was investigated at a temperature range from 300 °C to 500 °C. The results of the characterization indicate that the metastable tetragonal zirconia could be stably and evenly dispersed on the surface of alumina nanofibres. The interlaced nanorods of the Al2O3@ZrO2 core/shell nanocomposites resulted in a macropore structure and the spaces between the zirconia nanoparticles dispersed on the alumina nanofibres formed most of the mesopores. Zirconia on the surface of the support promoted the dispersion and influenced the reduction states of the nickel species on the support, so it prevented the nickel species from sintering as well as from forming a spinel phase with alumina at high temperatures, and thus reduced the carbon deposition during the reaction. With the increase of the zirconia content in the catalyst, the catalytic performance for the CO methanation was enhanced. The Ni/Al2O3@ZrO2-15 exhibited the highest CO conversion and methane selectivity at 400 °C, but they decreased dramatically above or below 400 °C due to the temperature sensitivity of the catalyst. Ni/Al2O3@ZrO2-30 exhibited a high and constant rate of methane formation between 350 °C and 450 °C. The excellent catalytic performance of this catalyst is attributed to its reasonable pore structure and good dispersion of zirconia on the support. This catalyst has great potential to be further studied for the future industrial use.  相似文献   

8.
Highly active Ni-Al2O3 catalysts were prepared by the homogeneous precipitation method with a variety of high nickel contents ranging from 30 to 70 wt.%. The effects of nickel content on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts were investigated. XRD measurements showed that the catalyst with 30 Ni wt.% only had a diffraction peak corresponding to NiAl2O4, whereas the catalysts of 50, 60 and 70 Ni wt.% had diffraction peaks corresponding to NiO and NiAl2O4. Hydrogen chemisorption results showed that the nickel surface area increased with increasing nickel content in the order: 30 < 40 < 50 < 60 < 70 Ni wt.%. Specifically, the nickel surface area increased steadily from 11 to 22 m2/g with increasing the nickel content from 30 to 50 wt.%, after which it stayed nearly constant at 22 m2/g despite the increase in nickel content from 50 to 70 wt.%. TEM images of the reduced Ni-Al2O3 catalysts revealed that the average sizes of the Ni particles were 12, 13 and 16 nm for the catalysts with 30, 50 and 70 Ni wt.%, respectively, suggesting that a higher nickel content yielded a larger Ni particle. The catalytic performance of methane steam reforming showed that the catalytic reaction rate increased steadily with increasing nickel content from 30 to 50 wt.%, after which it stayed nearly constant despite that the nickel content increased to over 50 wt.%. As a result, about 50 wt.% of nickel was found to be a reasonable nickel content to obtain the maximum catalytic activity.  相似文献   

9.
A series of Y2O3-promoted NiO/SBA-15 (9 wt% Ni) catalysts (Ni:Y weight ratio = 9:0, 3:1, 3:2, 1:1) were prepared using a sol–gel method. The fresh as well as the catalysts used in CO2 reforming of methane were characterized using N2-physisorption, XRD, FT-IR, XPS, UV, HRTEM, H2-TPR, O2-TPD and TG techniques. The results indicate that upon Y2O3 promotion, the Ni nanoparticles are highly dispersed on the mesoporous walls of SBA-15 via strong interaction between metal ions and the HO–Si-groups of SBA-15. The catalytic performance of the catalysts were evaluated at 700 °C during CH4/CO2 reforming at a gas hourly space velocity of 24 L gcat−1 h−1(at 25 °C and 1 atm) and CH4/CO2molar ratio of 1. The presence of Y2O3 in NiO/SBA-15 results in enhancement of initial catalytic activity. It was observed that the 9 wt% Y–NiO/SBA-15 catalyst performs the best, exhibiting excellent catalytic activity, superior stability and low carbon deposition in a time on stream of 50 h.  相似文献   

10.
Nickel catalysts supported on the K2TixOy–Al2O3 were prepared by the wet impregnation method for steam methane reforming to produce hydrogen. X-ray diffraction, N2 physisorption, scanning electron microscopy with energy dispersive spectroscopy, the H2 temperature-programed reduction technique, and X-ray photoelectron spectroscopy were employed for the characterization of catalyst samples. The results revealed that the performance of the Ni/K2TixOy–Al2O3 catalysts was comparable to that of commercial FCR-4 for steam methane reforming under the mild condition. In particular, a catalytic stability test at 800 °C and in the reactant flow with the steam-to-carbon (S/C) feed ratio of 1.0 indicated that the Ni/K2TixOy–Al2O3 catalysts were more active, thermally stable and resistant to deactivation than the non-promoted Ni/Al2O3. It is considered that the appropriate interaction strength between nickel and the modified support and proper K2TixOy phases with a surface monolayer coverage achieved at ca. 15 wt.% loading in the support play important roles in promoting the steam methane reforming activity as well as suppressing the sintering of the catalyst.  相似文献   

11.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

12.
The mesoporous Co3O4 supported catalysts on Ce–M–O (M = Mn, Zr, Sn, Fe and Ti) composites were prepared by surfactant-assisted co-precipitation with subsequent incipient wetness impregnation (SACP–IWI) method. The catalysts were employed to eliminate trace CO from H2-rich gases through CO preferential oxidation (CO PROX) reaction. Effects of M type in Ce–M–O support, atomic ratio of Ce/(Ce + Mn), Co3O4 loading and the presence of H2O and CO2 in feed were investigated. Among the studied Ce–M–O composites, the Ce–Mn–O is a superior carrier to the others for supported Co3O4 catalysts in CO PROX reaction. Co3O4/Ce0.9Mn0.1O2 with 25 wt.% loading exhibits excellent catalytic properties and the 100% CO conversion can be achieved at 125–200 °C. Even with 10 vol.% H2O and 10 vol.% CO2 in feed, the complete CO transformation can still be maintained at a wide temperature range of 190–225 °C. Characterization techniques containing N2 adsorption/desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and scanning electron microscopy (SEM) were employed to reveal the relationship between the nature and catalytic performance of the developed catalysts. Results show that the specific surface area doesn’t obviously affect the catalytic performance of the supported cobalt catalysts, but the right M type in carrier with appropriate amount effectively improves the Co3O4 dispersibility and the redox behavior of the catalysts. The large reducible Co3+ amount and the high tolerance to reduction atmosphere resulted from the interfacial interaction between Co3O4 and Ce–Mn support may significantly contribute to the high catalytic performance for CO PROX reaction, even in the simulated syngas.  相似文献   

13.
Catalysts with various nickel loads were prepared on supports of ZrO2, ZrO2–Y2O3 and ZrO2–CaO, characterized by XRD and TPR and tested for activity in ethanol steam reforming. XRD of the supports identified the monoclinic crystalline phase in the ZrO2 and cubic phases in the ZrO2–Y2O3 and ZrO2–CaO supports. In the catalysts, the nickel impregnated on the supports was identified as the NiO phase. In the TPR analysis, peaks were observed showing the NiO phase having different interactions with the supports. In the catalytic tests, practically all the catalysts achieved 100% ethanol conversion, H2 yield was near 70% and the gaseous concentrations of the other co-products varied in accordance with the equilibrium among them, affected principally by the supports. It was observed that when the ZrO2 was modified with Y2O3 and CaO, there were big changes in the CO and CO2 concentrations, which were attributed to the rise in the number of oxygen vacancies, permitting high-oxygen mobility and affecting the gaseous equilibrium. The liquid products analysis showed a low selectivity to liquid co-products during the reforming reactions.  相似文献   

14.
Supported nickel metal can be used as a tar-cracking catalyst in the thermal processing of large organics to give H2. Though porous supports offer the opportunity to disperse a relatively large amount of nickel, catalytic sites within small pores may be inaccessible to large tar molecules. To investigate this, we prepared nickel catalysts supported on γ-Al2O3 and on SBA-15- and mesocellular-foam-(MCF)-type silicas and studied their catalytic activities in the pyrolytic decomposition of cellulose (RT → 800 °C, ∂T/∂t = 40 °C/min). A thermogravimetric analyser-mass spectrometer (TG-MS) was used to study the influence of the Ni catalyst and support materials on the H2 yield and selectivity. The silica-MCF-supported Ni catalyst decreased char residue and enhanced H2 yield, producing 1.6 and 3.5× the H2 yield obtained using SBA-15-supported Ni and γ-Al2O3-supported Ni, respectively. MCF, with ultra-large pores (d ∼ 15−50 nm), was thus identified as the most beneficial catalyst support for this application.  相似文献   

15.
Perovskite-like oxides LaNi1−xCuxO3 (x = 0.1, 0.4, 0.5) were prepared by means of the citric acid complexing method. TPR revealed the incorporation of Cu into the perovskite lattice increased the reducibility of the catalyst. After LaNi1−xCuxO3 were pretreated in H2 for 2 h at certain low temperature, the material still retained its perovskite structure and oxygen vacancies were generated in the lattice. DRS showed that narrowing of band-gap of reduced LaNi1−xCuxO3 was governed by the crystalline structure and the defect in the catalyst. In the photocatalytic water splitting experiment, 200 and 250°C-reduced LaNi0.6Cu0.4O3, 200°C-reduced LaNi0.5Cu0.5O3 possessed the high and colse catalytic activity. XPS showed that the molar ratio of Cu2+/Cu1≈1 and lattice oxygen/adsorb oxygen ≈ 0.2 in the catalysts had high catalytic activity. According to the outcome of our experiments, we conclude that there is a balance relation either between oxygen vacancies and catalytic activity or between Cu2+/Cu1+ redox couples and catalytic performance of these materials for hydrogen production from photocatalytic water splitting. Enhancement of hydrogen yield can be attributed to the small band-gap and the lowering the recombination probability for electron-hole pairs.  相似文献   

16.
Three kinds of Ce0.8Zr0.2O2 solid solutions synthesized via surfactant-assisted route, co-precipitation, and sol–gel method were used as supports of Ni-based catalysts by impregnation. Their catalytic activities in ammonia decomposition to hydrogen were tested, and the structural effect of support and the influence of nickel content on catalytic activity were evaluated. Mesoporous/high-surface-area Ce0.8Zr0.2O2 support synthesized by surfactant-assisted method exhibited better promoting effect than other supports when the same content of Ni was loaded. The interactions between Ni species and Ce0.8Zr0.2O2 supports were found to greatly affect the chemical properties of catalysts, including redox, H2 adsorption, and catalysis. The promoting effects of Ce in catalysts, plentiful vacancies in the solid solutions due to the doping of Zr4+, and high surface areas of the supports were discussed on the ammonia decomposition activities of the resultant catalysts, as well as the influence of hydrogen spillover. The ammonia conversion of 95.7% with the H2 producing rate of 89.3 mL/min·gcat was achieved at 550 °C over the Ni catalysts supported on the mesoporous/high-surface-area Ce0.8Zr0.2O2.  相似文献   

17.
In this work mesoporous nanocrystalline chromium free Fe–Al–Ni catalysts with various Fe/Al and Fe/Ni ratios were prepared by coprecipitation method for high temperature water gas shift reaction. The prepared catalysts were characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM) techniques. The catalytic results revealed that the catalyst with Fe/Al = 10 and Fe/Ni = 5 weight ratios exhibited the highest catalytic activity among the prepared catalysts and the commercial chromium containing one. This catalyst possessed a high surface area of 177.4 m2 g−1 with an average pore size of 4.3 nm with a high stability during 20 h time on stream. Furthermore, the effect of calcination temperature, GHSV and steam/gas ratio on the structural properties and catalytic performance of the catalyst with the highest activity was investigated.  相似文献   

18.
Ni/Y2O3, with Y2O3 support prepared by the conventional precipitation method, was prepared by an impregnation method. The physicochemical properties of Y2O3 and Ni/Y2O3 were characterized by BET, CO2-TPD, NH3-TPD, TPR, XRF and TGA, and compared with those of γ-Al2O3 and Ni/γ-Al2O3, respectively. The catalytic performance of Ni/Y2O3 in the reaction of partial oxidation of methane (POM) to syngas was evaluated and compared with that of Ni/γ-Al2O3 catalyst, too. The results showed that, Y2O3 was a basic support with few acidic sites while γ-Al2O3 was an acidic support. NiO particles supported on Y2O3 were more easily to be reduced than those supported on γ-Al2O3. In the partial oxidation of methane, Ni/Y2O3 catalyst showed high catalytic activity and exhibited better catalytic stability than Ni/γ-Al2O3. After POM reaction at 700 °C for 550 h, methane conversion decreased little and only 2.2 wt% carbon was deposited on Ni/Y2O3 catalyst. Ni/Y2O3 was stable in POM even after a series of reaction temperature variations within the temperature range of 400 ∼ 800 °C.  相似文献   

19.
In recent years, catalytic decomposition of light hydrocarbons has been explored as an interesting alternative to produce COx-free hydrogen along with valuable carbonaceous nanomaterials. In this contribution, we report on the effect of B on the catalytic performance of Co/Al2O3 catalysts during propane decomposition. Unpromoted and B-promoted (0.5–5 wt.% B) Co catalysts were prepared by incipient wetness impregnation and thoroughly characterized using XRD, XPS, TPR, H2 chemisorption, CO-FTIR, Raman, TPO and TEM. The kinetic data were analysed using a phenomenological kinetic model. The kinetic results indicate the existence of an optimal amount of boron (ca. 2%) that maximizes both activity and stability of the catalyst. Based on the analysis of the kinetic parameters, it can be concluded that the presence of boron slows down the carburization and carbon diffusion steps, decreasing the amount of CNTs formed. However, the addition of Boron simultaneously decreases the formation of encapsulating coke, which is the cause of the catalyst deactivation.  相似文献   

20.
In this work the effects of different promoters (Cr, Al, Mn, Ce, Ni, Co and Cu) on the structural and catalytic properties of Nanocrystalline iron based catalysts for high temperature water gas shift reaction were investigated. The catalysts were prepared in active phase (Fe3O4) via a facile direct synthesis routs without any additive and characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR), transmission and scanning electron microscopies (TEM,SEM) techniques. The obtained results indicated that synergic effect of Mn and Ni promoters can lead to obtain a Cr-free catalyst with high activity. In addition, the effect of Ni content on the structural and catalytic properties of the Fe–Mn–Ni catalysts was investigated. It was found that Fe–Mn–Ni catalyst with Fe/Mn = 10 and Fe/Ni = 5 weight ratios showed the highest catalytic activity among the prepared catalysts and possessed a stable catalytic performance without any decrease during 10 h time on stream. Moreover, the effect of GHSV and steam/gas ratio on the catalytic performance of this catalyst was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号