首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability and electronic properties of small Pdn clusters (n = 1–5), adsorbed on different types of double vacancy (DV) defect graphene sheets are thoroughly investigated by both density functional theory (DFT) and molecular dynamics (MD). Defect bridge sites of DV(555-777) defect graphene sheet are identified to be the most favorable for Pd4 cluster adsorption. MD calculations, performed using a canonical ensemble, showed this system to be highly stable up to 800 K. Much better hybridization between C 2p and Pd 4d and 5s orbitals near Fermi level as well as higher charge transfer to graphene sheet was found to be the governing reason for enhanced stability of Pd4 cluster on DV(555-777) defect site. Comparative analysis of H2 storage on Pd4 cluster adsorbed pristine and DV(555-777) defect graphene sheet showed, while adsorption energy/H2 molecule for both cases lie well within desirable energy window for a hydrogen storage media, the later is much more efficient energetically as distorted in plane sp2 hybridization reduces the saturations of C–C bonds in the defect regions, making more electron density available for bonding; which leads to higher net charge gain of Pd4 cluster and higher charge sharing with H2 molecule.  相似文献   

2.
Employing first-principles calculations, we have studied the structure, stability and hydrogen storage efficiency of pristine and defective BC3 and C3N monolayer functionalized by a variety of single metal adatoms. It is found that single Sc adatom, acting as an optimal dopant on perfect BC3 monolayer, is able to adsorb up to nine H2 molecules as strongly as around 0.24 eV/H2, which allows for a hydrogen storage capacity of 7.19 wt% for Sc atoms stably adsorbing on double sides of BC3 monolayer with eighteen H2 molecules (18H2@2Sc/BC3). Moreover, the desorption temperature and thermodynamical stability of multiple H2 adsorbed Sc-decorated BC3 sheet have been addressed and the saturate configuration of 18H2@2Sc/BC3 is predicted to be stable at mild temperatures and pressures, i.e. less than 250 K at 1 bar, or larger than 24 bar at room temperature. This study indicates that the Sc-decorated BC3 monolayer could be a potential H2 storage candidate, and provides an instructive guidance for designing metal-functionalized carbon-based sheets in hydrogen storage.  相似文献   

3.
In the present work, the role of NbF5 addition amount in affecting the comprehensive hydrogen storage properties (dehydrogenation, rehydrogenation, cycling performance, hydrogen capacity) of 2LiBH4–MgH2 system as well as the catalytic mechanism of NbF5 have been systematically studied. It is found that increasing the addition amount of NbF5 to the 2LiBH4–MgH2 system not only results in dehydrogenation temperature reduction and hydriding–dehydriding kinetics enhancement but also leads to the de/rehydrogenation capacity loss. Compared with other samples, 2LiBH4–MgH2 doping with NbF5 in weight ratios of 40:4 exhibits superior comprehensive hydrogen storage properties, which can stably release ∼8.31 wt.% hydrogen within 2.5 h under 4 bar H2 and absorb ∼8.79 wt.% hydrogen within 10 min under 65 bar H2 at 400 °C even up to 20 cycling. As far as we know, this is the first time that excellent reversibility as high as 20 cycles without obvious degradation tendency in both of hydrogen capacity and reaction rate has been achieved in the 2LiBH4–MgH2 system. The further experimental study reveals that the highly catalytic effects of NbF5 on the 2LiBH4–MgH2 system are derived from the reaction between NbF5 and LiBH4, which provides a fundamental insight into the catalytic mechanism of NbF5.  相似文献   

4.
We report a density-functional theory study of dihydrogen adsorption on a graphene sheet functionalized with palladium dimers considering different adsorption sites on the carbon surface and both molecular and dissociative Pd2H2 coordination structures. Our results show that a (PdH)2 ring without an H–H bond and not dissociative Pd2(H2) complexes are stable adsorbed systems with more elongated Pd−Pd and Pd–H bonds compared to the unsupported configurations caused by C–Pd interactions. In contrast, individual Pd atoms supported on graphene react with H2 to form only a Pd(H2) complex with a relaxed but not dissociated H–H bond. We also performed the Mulliken analysis to study the bonding mechanism during the adsorption process. In most cases, we found donor-acceptor C−Pd and Pd−H interactions in which C 2p, Pd 5s, and H 1s orbitals played an important role. We also found that the adsorption of a second Pd atom close to a PdH2 system destabilizes the H−H bond. In this work we contribute to shed more light on the relation between Pd clustering and the possibility of hydrogen storage in graphene-based materials.  相似文献   

5.
For an envisioned hydrogen (H2) economy, the design of new multifunctional two-dimensional (2D) materials have been a subject of intense research for the last several decades. Here, we report the thriving H2 storage capacity of 2D nitrogenated holey graphene (C2N), functionalized with Tin (n = 1–5) clusters. By using spin polarized density functional theory (DFT) calculations implemented with the van der Waals corrections, the most favourable adsorption site for the Tin clusters on C2N has been revealed. With the monomer Ti, the functionalization was evenly covered on C2N having 5% doping concentration (C2N–Ti). For C2N–Ti sheet, Ti binds to C2N with a strong binding energy of ~6 eV per Ti which is robust enough to hinder any Ti–Ti clustering. Bader charge analysis reveals that the Tin clusters donate significant charges to C2N sheet and become cationic to polarize the H2 molecules, thus act as efficient anchoring agents to adhere multiple H2 molecules. Each Ti in C2N–Ti could adsorb a maximum of 10H2 molecules, with the adsorption energies in the range of ?0.2 to ?0.4 eV per H2 molecule, resulting into a high H2 storage capacity of 6.8 wt%, which is promising for practical H2 storage applications at room temperature. Furthermore, Tim (m = 2, 3, 4, 5) clusters have been selectively decorated over C2N. However, with Tim functionalization H2 storage capacities fall short of the desirable range due to large molecular weights of the systems. In addition, the H2 desorption mechanism at different conditions of pressure and temperature were also studied by means of thermodynamic analysis that further reinforce the potential of C2N–Ti as an efficient H2 storage material.  相似文献   

6.
The kinetics of formation of H2–TBAB semi-clathrate hydrates was studied in this work in order to elucidate their potential for H2 storage. The influence of pressure (5–16 MPa), TBAB concentration (2.6 mol% and 3.7 mol%) and formation method (T-cycle method and T-constant method) on the hydrate nucleation, hydrate growth and H2 storage capacity was determined. The results showed that kinetics is favored at higher pressures and solute concentrations. Additionally, the hydrate phase formation and dissociation was study for a solution of 2.6 mol% of TBAB in situ by using the Raman spectroscopy technique. The inclusion of H2 in the semi-hydrate phase was confirmed. The results showed the importance of H2 mass transfer on the storage capacity of the H2–TBAB semi-hydrates.  相似文献   

7.
2LiBH4 + MgH2 system is considered as an attractive candidate for reversible hydrogen storage with high capacity and favorable thermodynamics. However, its reaction kinetics has to be further improved for the practical application. In this work, we investigated the effect of NbCl5 additive on the de/hydrogenation kinetics and microstructure refinement in 2LiH–MgB2 composite systematically. The hydrogenation and dehydrogenation kinetics of 2LiH–MgB2 composite can be significantly enhanced with the increase of NbCl5 content. The 3 mol% NbCl5 doped 2LiH–MgB2 composite exhibits the superior reversible hydrogen storage performance, which requires 50 min to uptake 9.0 wt% H2 at 350 °C and release 8.5 wt% H2 at 400 °C, respectively. In contrast, the undoped 2LiH–MgB2 sample uptakes 6.2 wt% H2 and releases 3.1 wt% H2 under identical measurement conditions. Moreover, the 3 mol% NbCl5 doped 2LiH–MgB2 composite can release more than 9.0 wt% H2 within 300 min at 400 °C without obvious degradation of capacity over the first 10 cycles. Microstructure analyses clearly indicate that NbCl5 additive first reacts with LiH to form Nb and LiCl during ball-milling process, and then NbH is formed after the first hydrogenation and stabilized upon further de/hydrogenation cycling. The well-distributed NbH active species play an important role in the improvement of de/hydrogenation kinetics for Li–Mg–B–H system through facilitating hydrogen diffusion rapidly as well as prevent the particles from further growth in the subsequent hydrogenation and dehydrogenation processes.  相似文献   

8.
Based on first-principles calculations, we find Li-decorated benzene complexes are promising materials for high-capacity hydrogen storage. Lithium atoms in the complexes are always positively charged, and each one can bind at most four H2 molecules by a polarization mechanism. Therefore, a hydrogen uptake of 8.6 wt% and 14.8 wt% can be achieved in isolated C6H6–Li and Li–C6H6–Li complexes, respectively. The binding energy in the two cases is 0.22 eV/H2 and 0.29 eV/H2, respectively, suitable for reversible hydrogen storage. Various dimers may form, but the hydrogen storage capacity remains high or uninfluenced. This study provides not only a promising hydrogen storage medium but also comprehensions to other hydrogen storage materials containing six-carbon rings.  相似文献   

9.
Li dispersed graphene with Stone–Wales (SW) defects was investigated for geometric stability and hydrogen storage capability using density functional theory (DFT) calculations. When the graphene with SW defects, which has the internal strain derived from rotated C–C bond, adsorbs Li adatoms, the strain is relieved by generating the buckling of graphene. This effect plays a crucial role in enhancing the binding energy (Eb) of Li adatoms, consequently allowing the atomic dispersion of Li adatoms on the graphene without clustering. The Li dispersed graphene with SW defects can accommodate four H2 molecules with the range of 0.20–0.35 eV. This falls in a desirable range for feasible applications under ambient conditions. It is therefore anticipated that Li dispersed graphene with SW defects may be an ideal hydrogen storage media due to its geometric stability and high hydrogen storage capacity.  相似文献   

10.
Hydrogen storage properties of co-functionalized 2D GaS monolayer have been systematically investigated by first-principles calculations. The strength of the binding energy of hydrogen (H2) molecules to the pristine GaS surface shows the physisorption interactions. Co-functionalized GaS sheet by Li, Na, K and Ca atoms enhanced the capacity of binding energies of hydrogen and strength of hydrogen storage considerably. Besides, DFT calculations show that there is no structural deformation during H2 desorption from co-functionalized GaS surface. The binding energies of per H2 molecules is found to be 0.077 eV for pristine GaS surface and 0.064 eV–0.37 eV with the co-functionalization of GaS surface. Additionally, in the presence of applied external electric field enhanced the strength of binding energies and it is found to be 0.09 eV/H2 for pristine GaS case and 0.19 eV/H2 to 0.38 eV/H2 for co-functionalized GaS surface. Among the studied GaS monolayer is found to be the superior candidate for hydrogen storage purposes. The theoretical studies suggest that the electronic properties of the 2D GaS monolayer show the electrostatic behavior of hydrogen molecules which confirms by the interactions between adatoms and hydrogen molecules before and after hydrogen adsorption.  相似文献   

11.
How to efficiently hydrolyze NaBH4 to H2 has been greatly concerned due to its theoretically high hydrogen storage capacity (10.8 wt. %). In this work, Ru–RuO2/C catalyst is prepared by the galvanic replacement reaction of Ni based material. By evaluating the hydrolysis activity, analyzing the structure and component of the catalysts and exploring the possible reaction channels, we find that Ru–RuO2/C has the excellent hydrolysis activity of 16.8 L H2 min1 gcat.1 in 5 wt. % NaBH4 and 1 wt. % NaOH solution at 323 K, which is higher than most data in open literature. The more reducible RuO2 (110) crystal at about 423 K plays an important role in the high hydrolysis activity of Ru–RuO2/C. The ruthenium oxide facilitates the dissociation of water, a rate-determining step of NaBH4 hydrolysis to H2, while Ru acts as an active phase for NaBH4 dissociation. A synergetic effect of RuO2 and Ru on Ru–RuO2/C is crucial to the high hydrolysis activity of sodium borohydride and it can also be kept in repeated experiments.  相似文献   

12.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

13.
A 3NaBH4/YF3 hydrogen storage composite was prepared through ball milling and its hydrogen sorption properties were investigated. It is shown that NaBH4 does not react with YF3 during ball milling. The dehydrogenation of the composite starts at 423 °C, which is about 100 °C lower than the dehydrogenation temperature of pure NaBH4, with a mass loss of 4.12 wt%. Pressure–Composition–Temperature tests reveal that the composite has reversible hydrogen sorption performance in the temperature range from 350 °C to 413 °C and under quite low hydrogenation plateau pressures (<1 MPa). Its maximum hydrogen storage capacity can reach up to 3.52 wt%. The dehydrogenated composite can absorb 3.2 wt% of hydrogen within 5 min at 400 °C. Based on the Pressure–Composition–Temperature analyses, the hydrogenation enthalpy of the composite is determined to be −46.05 kJ/mol H2, while the dehydrogenation enthalpy is 176.76 kJ/mol H2. The mechanism of reversible hydrogen sorption in the composite involves the decomposition and regeneration of NaBH4 through the reaction with YF3. Therefore, the addition of the YF3 to NaBH4 as a reagent forms a reversible hydrogen storage composite.  相似文献   

14.
La–Fe–B hydrogen-storage alloys were prepared using a vacuum induction-quenching furnace with a rotating copper wheel. The thermodynamic and kinetic properties of the La–Fe–B hydrogen-storage alloys were investigated in this work. The P–C–I curves of the La–Fe–B alloys were measured over a H2 pressure range of 10−3 MPa to 2.0 MPa at temperatures of 313, 328, 343 and 353 K. The P–C–I curves revealed that the maximum hydrogen-storage capacity of the alloys exceeded 1.23 wt% at a pressure of approximately 1.0 MPa and temperature of 313 K. The standard enthalpy of formation ΔH and standard entropy of formation ΔS for the alloys' hydrides, obtained according to the van't Hoff equation, were consistent with their application as anode materials in alkaline media. The alloys also exhibited good absorption/desorption kinetics at room temperature.  相似文献   

15.
Hydrogen storage capacity has been investigated on a copper-based metal organic framework named HKUST-1 with fine structural analyses. The crystalline structure of HKUST-1 MOF has been confirmed from the powder X-ray diffraction and the average particle diameter has been found about 15–20 μm identified by FE-SEM. Nitrogen adsorption isotherms show that HKUST-1 MOF has approximately type-I isotherm with a BET specific surface area of 1055 m2g−1. Hydrogen adsorption study shows that this material can store 0.47 wt.% of H2 at 303 K and 35 bar. The existence of Cu (II) in crystalline framework of HKUST-1 MOF has been confirmed by pre-edge XANES spectra. The sharp feature at 8985.8 eV in XANES spectra represents the dipole-allowed electron transition from 1s to 4pxy. In addition, EXAFS spectra indicate that HKUST-1 MOF structure has the Cu–O bond distance of 1.95 Å with a coordination number of 4.2.  相似文献   

16.
In this paper, we report here the hydrogen storage capacity of activated carbon aerogel synthesized by ambient pressure drying using a new catalyst. The carbon aerogel (CA) has been synthesized by the sol-gel method using resorcinol (R) and formaldehyde (F). For drying of RF wet gel instead of expensive and unsafe supercritical process, we have used ambient pressure drying. To avoid shrinkage which may occur due to this mode of drying, instead of usual catalyst (C): Na2CO3, organic catalyst triethylamine (TEA), which is known to be a condensing agent has been used. In order to find out the effect of change of R/C ratio on hydrogen sorption, three different R/C namely CA 1000, CA 2000, and CA 3000 were taken. Structural and microstructural details have been studied employing XRD, SEM, TEM, nitrogen adsorption, FTIR, and Raman spectroscopy. TEM and nitrogen adsorption studies have revealed that aerogel with R/C 1000 exhibits a higher degree of micropore density. The hydrogen storage capacities for all R/C ratios have been determined. It has been found that carbon aerogel (CA) with R/C = 1000, exhibits the highest hydrogen adsorption capacity out of the three aerogels. At liquid nitrogen temperature, the hydrogen storage capacity of aerogel with R/C = 1000 for the as-synthesized and activated carbons have been found to be 4.00 wt % and 4.80 wt %. A viable reason for the occurrence of high hydrogen storage capacity at liquid nitrogen temperature for aerogel with R/C = 1000 has been put forward.  相似文献   

17.
Hydrogen storage properties of Li functionalized B2S honeycomb monolayers are studied using density functional theory calculations. The binding of H2 molecules to the clean B2S sheet proceeds through physisorption. Dispersed Li atoms on the monolayer surface increase both the hydrogen binding energies and the hydrogen storage capacities significantly. Additionally, ab initio molecular dynamics calculations show that there is no kinetic barrier during H2 desorption from lithiated B2S. Among the studied B8S4Lix (x = 1, 2, 4, and 12) compounds, the B8S4Li4 is found to be the most promising candidate for hydrogen storage purposes; with a 9.1 wt% H2 content and 0.14 eV/H2 average hydrogen binding energy. Furthermore, a detailed analysis of the electronic properties of the B8S4Li4 compound before and after H2 molecule adsorption confirms that the interactions between Li and H2 molecules are of electrostatic nature.  相似文献   

18.
A new, detailed kinetic model was developed for the homogeneous decomposition of HI–H2O solutions in vapor phase in the sulfur–iodine cycle. The kinetics of the process was represented by a reaction mechanism involving 32 reactions and 11 species. Comparisons between the kinetic calculations and experimental data showed that this model correctly predicted the hydrogen yield at the 500 °C–1000 °C temperature range under 1 atm. The effects of temperature, reaction time, and HI/H2O ratio on HI decomposition and hydrogen sensitivity analysis were investigated in the modeling process. The model predicted that the effect of the addition of H2O changed from inhibiting the decomposition ratio to promoting it with increasing temperature. The sensitivity analysis showed that elementary reactions (1) HI + HI = H2+I2, (4) HI + H = H2 + I, (5) HI + I = H + I2, and (8) HI + OH = H2O + I played important roles in hydrogen production. The reaction path of HI decomposition with H2O was constructed based on detailed kinetic modeling and sensitivity analysis results.  相似文献   

19.
The hydrogen production from an easily transported liquid feedstock can be an efficient alternative for fuel cells application. The steam-oxidative reforming of bio-ethanol by a novel gliding arc discharge named Laval nozzle arc discharge (LNAD) was investigated in this paper at low temperature and atmospheric pressure. The conversion efficiency and product distributions, mainly of H2 and CO, were studied as functions of O/C ratio, S/C ratio, the ethanol flow rate and input power. The voltage–ampere (V–I) characteristic is also discussed here concerning the non-thermal plasma effect on the bio-ethanol reforming. A high conversion rate and fair H2 yield have been achieved, 90% and 40% respectively. When the ethanol flow rate (Gethanol) was 0.15 g s−1 and S/C = 2.0, the minimum specific energy requirement of H2 and CO were achieved at O/C = 1.4 with the specific energy input of 55.44 kJ per ethanol mole, 72.92 kJ mol−1 and 80.20 kJ mol−1 respectively. The optimal conditions for ethanol reforming seem to be S/C = 2.0 and O/C = 1.4–1.6, which are higher than those of the reaction's stoichiometry. This paper shows interesting results in comparison with the ethanol reforming assisted by other discharges. Compared with others, it features good conversion rate, low energy consumption and significantly reduced nitrogen oxide emission.  相似文献   

20.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号