首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel hydrogen-producing strain was isolated from gamma irradiated digested sludge and identified as Clostridium butyricum INET1. The fermentative hydrogen production performance of the newly isolated C. butyricum INET1 was characterized. Various carbon sources, including glucose, xylose, sucrose, lactose, starch and glycerol were used as substrate for hydrogen production. The operational conditions, including temperature, initial pH, substrate concentration and inoculation proportion were evaluated for their effects on hydrogen production, and the optimal condition was determined to be 35 °C, initial pH 7.0, 10 g/L glucose and 10% inoculation ratio. Cumulative hydrogen production of 218 mL/100 mL and hydrogen yield of 2.07 mol H2/mol hexose was obtained. The results showed that C. butyricum INET1 is capable of utilizing different substrates (glucose, xylose, sucrose, lactose, starch and glycerol) for efficient hydrogen production, which is a potential candidate for fermentative hydrogen production.  相似文献   

2.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

3.
The present study is focused on bio hydrogen (H2) and bioplastic (i.e., poly-β-hydroxybutyrate; PHB) productions utilizing various wastes under dark fermentation, photo fermentation and subsequent dark-photo fermentation. Potential bio H2 and PHB producing microbes were enriched and isolated. The effects of substrate (rice husk hydrolysate, rice straw hydrolysate, dairy industry wastewater, and rice mill wastewater) concentration (10–100%) and pH (5.5–8.0) were examined in the batch mode under the dark and photo fermentation conditions. Using 100% rice straw hydrolysate at pH 7, the maximum bio H2 (1.53 ± 0.04 mol H2/mol glucose) and PHB (9.8 ± 0.14 g/L) were produced under dark fermentation condition by Bacillus cereus. In the subsequent dark-photo fermentation, the highest amounts of bio H2 and PHB were recorded utilizing 100% rice straw hydrolysate (1.82 ± 0.01 mol H2/mol glucose and 19.15 ± 0.25 g/L PHB) at a pH of 7.0 using Bacillus cereus (KR809374) and Rhodopseudomonas rutila. The subsequent dark-photo fermentative bio H2 and PHB productions obtained using renewable biomass (i.e., rice husk hydrolysate and rice straw hydrolysate) can be considered with respect to the sustainable management of global energy sources and environmental issues.  相似文献   

4.
Feasibility of hydrogen production from acid and enzymatic oat straw hydrolysates was evaluated in an anaerobic sequencing batch reactor at 35 °C and constant substrate concentration (5 g chemical oxygen demand/L). In a first experiment, hydrogen production was replaced by methane production. Selective pressures applied in a second experiment successfully prevented methane production. During this experiment, initial feeding with glucose/xylose, as model substrates, promoted biomass granulation. Also, the highest hydrogen molar yield (HMY, 2 mol H2/mol sugar consumed) and hydrogen production rate (HPR, 278 mL H2/L-h) were obtained with these model substrates. Gradual substitution of glucose/xylose by acid hydrolysate led to disaggregation of granules and lower HPR and HMY. When the model substrates were completely substituted by enzymatic hydrolysate, the HMY and HPR were 0.81 mol H2/mol sugar consumed and 29.6 mL H2/L-h, respectively. Molecular analysis revealed a low bacterial diversity in the stages with high hydrogen production and vice versa. Furthermore, Clostridium pasteurianum was identified as the most abundant species in stages with a high hydrogen production. Despite that feasibility of hydrogen production from hydrolysates was demonstrated, lower performance from hydrolysates than from model substrates was obtained.  相似文献   

5.
Hydrogen production from Arthrospira (Spirulina) platensis wet biomass through heterofermentation by the [FeFe] hydrogenase of hydrogenogens (hydrogen-producing bacteria) and autofermentation by the [NiFe] hydrogenase of Arthrospira platensis was discussed under dark anaerobic conditions. In heterofermentation, wet cyanobacterial biomass without pretreatment was hardly utilized by hydrogenogens for hydrogen production. But the carbohydrates in cyanobacterial cells released after cell wall disruption were effectively utilized by hydrogenogens for hydrogen production. Wet cyanobacterial biomass was pretreated with boiling and bead milling, ultrasonication, and ultrasonication and enzymatic hydrolysis. Wet cyanobacterial biomass pretreated with ultrasonication and enzymatic hydrolysis achieved the maximum reducing sugar yield of 0.407 g/g-DW (83.0% of the theoretical reducing sugar yield). Different concentrations (10 g/l to 40 g/l) of pretreated wet cyanobacterial biomass were used as substrate to produce fermentative hydrogen by hydrogenogens, which were domesticated with the pretreated wet cyanobacterial biomass as carbon source. The maximum hydrogen yield of 92.0 ml H2/g-DW was obtained at 20 g/l of wet cyanobacterial biomass. The main soluble metabolite products (SMPs) in the residual solutions from heterofermentation were acetate and butyrate. In autofermentation, hydrogen yield decreased from 51.4 ml H2/g-DW to 11.0 ml H2/g-DW with increasing substrate concentration from 1 g/l to 20 g/l. The main SMPs in the residual solutions from autofermentation were acetate and ethanol. The hydrogen production peak rate and hydrogen yield at 20 g/l of wet cyanobacterial biomass in heterofermentation showed 110- and 8.4-fold increases, respectively, relative to those in autofementation.  相似文献   

6.
The aim of the present study was to assess the influence of substrate concentration on the fermentative hydrogen production from sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time (HRT) of 12 h and carbohydrate concentrations ranging from 9.89 to 20.99 g/L, in glucose equivalents. The maximum hydrogen production rate and yield were obtained at the concentration of 17.50 g carbohydrates/L and were 2.93 ± 0.09 L H2/L reactor/d and 0.74 ± 0.02 mol H2/mol glucose consumed, corresponding to 8.81 ± 0.02 L H2/kg sweet sorghum, respectively. The main metabolic product at all steady states was butyric acid, while ethanol production was high at high substrate concentrations. The experiments showed that hydrogen productivity depends significantly on the initial carbohydrate concentration, which also influences the distribution of the metabolic products.  相似文献   

7.
Photosynthetic bacteria have been extensively investigated for biohydrogen production due to their high intrinsic substrate conversion efficiency. Many studies have examined different aspects of photo fermentative hydrogen production using various volatile organic fatty acids under nitrogen limited conditions, and in some cases nearly stoichiometric hydrogen yields have been obtained. In addition, there has been great interest in using photosynthetic bacteria to increase the yields of dark fermentation of glucose through either two stage or co-culture approaches. Although these processes can achieve yields of about 7 mol of H2 per mole of glucose, there have many drawbacks. Thus, we have begun the systematic investigation of a simple one stage system for the conversion of glucose to hydrogen through photofermentation by Rhodobacter capsulatus. Yields of about 3 mol of H2 per moles of glucose have been obtained, which represents a yield of 25% yield. Thus improvement is needed and can be sought through a variety of means, including. process optimization and gene inactivation. These approaches could allow the development of a single stage process for the complete stoichiometric conversion of glucose, or glucose containing wastes, to hydrogen with a minimal lag phase and relative insensitivity to inhibition by fixed nitrogen. This would present an attractive simple alternative to either two stage or co-culture fermentations for the complete conversion of carbohydrate substrates to hydrogen.  相似文献   

8.
There are many factors affecting the dark fermentative hydrogen production. The interaction of these factors, that is, their combined effects, should be investigated for better design of the systems with stable and higher hydrogen yields. This study aimed to investigate the combined effects of initial substrate, pH, and biomass (or initial substrate to biomass) values on hydrogen production from sucrose and sugar‐beet molasses. Therefore, optimum initial chemical oxygen demand (COD), pH, and volatile suspended solids (VSS) or initial substrate to biomass (VSS) ratio (S/Xo) values leading to the highest dark fermentative hydrogen production were investigated in batch reactors. An experimental design approach (response surface methodology) was used. Results revealed that when sucrose was the substrate, maximum hydrogen production yield (HY) of 2.3 mol H2/mol sucroseadded was obtained at initial pH of 7 and COD of 10 g/L. Initial S/Xo values studied (4–20 g COD/g VSS) had no effect on HY, while the initial pH was found as the parameter mostly affecting both HY and hydrogen production rate (HPR). When substrate was molasses, initial COD concentration was the only variable affecting HY and HPR. Maximum of both was achieved at 10 g/L initial COD. Initial VSS values studied (2.5–7.5 g/L) had no effect on HPR and HY. This study also indicated that molasses leads to homoacetogenesis for potentially containing intrinsic microorganism and/or natural constituents; thus, sucrose is more advantageous for hydrogen production via fermentation. Homoacetogenesis should be prevented for effective optimization via response surface methodology, if substrate is a natural carbon source potential to have intrinsic microorganisms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The production of hydrogen using microorganisms is an environment-friendly and less energy-intensive way of producing hydrogen. Rhodoplanes piscinae is a photosynthetic bacterium with the ability of hydrogen production under photosynthetic conditions. In this study, a new strain 51ATA was isolated from Lake Akkaya, Nigde, Turkey that is exposed to some industrial effluent charges. The new strain was identified as R. piscinae by phylogenetic analysis of the 16S ribosomal DNA (rDNA) sequence. The quality of molasses as a substrate for hydrogen production was evaluated by comparing it with other substrates, such as glucose and acetate. Five different culture media of various concentrations (1.0 g/L, 2.0 g/L, 5.0 g/L, 10 g/L, and 20 g/L) for each substrate were used. Results have shown that molasses was the best substrate for the biohydrogen production. The highest amount of biohydrogen obtained from each (20 g/L) substrate was (1.27 L H2/L from molasses-containing culture), (0.72 L H2/L from glucose-containing culture), and acetate-containing culture (0.21 L H2/L) respectively. From these results, we could conclude that R.piscinae 51ATA strain is as good as the other bacterial species used for hydrogen production and may be considered as a high potential strain for hydrogen production when used in combination with molasses under phototrophic conditions.  相似文献   

10.
A marine photosynthetic bacterial consortium was studied for its capability of hydrogen production using treated soy sauce wastewater and bagasse as a sole carbon source. Denaturing gradient gel electrophoresis (DGGE) profiles showed that the dominant bacterium in the bacterial consortium was Rhodobium marinum. The effects of treatments of soy sauce wastewater were tested for hydrogen production. The feedstock treatments included dilution, sterilization, neutralization and by adding sodium bicarbonate and yeast extract. The maximal cumulative hydrogen production was achieved up to 200 ± 67 mL H2 in the medium containing soy sauce and 41 ± 16 mL H2 from the hydrolyzed bagasse as substrate.  相似文献   

11.
The enhancement of hydrogen production by Enterobacter aerogenes and Enterobacter cloacae from fermentation of carbon sources such as glucose and lactose (from cheese whey permeate) was investigated. Also, the influence of the luminosity (2200 lux) and anaerobic condition (nitrogen and argon gases) were evaluated. The assays were carried out in 50 mL reactors during 108 h. To E. aerogenes/nitrogen/luminosity condition and using glucose as substrate, H2 production (73.8 mmol/L.d) was higher than using lactose (15.5 mmol/L.d). In the dark fermentation, hydrogen yields were 1.60 mol H2/mol glucose and 1.36 molH2/mol lactose. When using E. cloacae, the light fermentation using nitrogen gas resulted in 77 mmol H2/L.d and 1.62 mol H2/mol glucose. In addition, for E. cloacae, hydrogen yields using argon gas and luminosity provided 2.39 mol/mol glucose and 2.53 mol/mol lactose. In general, butyric and acetic acid fermentation were observed and favored the target-product (H2).  相似文献   

12.
Thermophilic dark fermentative hydrogen producing bacterial strain, TERI S7, isolated from an oil reservoir flow pipeline located in Mumbai, India, showed 98% identity with Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. It produced 1450–1900 ml/L hydrogen under both acidic and alkaline conditions; at a temperature range of 45–60 °C. The maximum hydrogen yield was 2.5 ± 0.2 mol H2/mol glucose, 2.2 ± 0.2 mol H2/mol xylose and 5.2 ± 0.2 mol H2/mol sucrose, when the respective sugars were used as carbon source. The cumulative hydrogen production, hydrogen production rate and specific hydrogen production rate by the strain TERI S7 with sucrose as carbon source was found to be 1704 ± 105 ml/L, 71 ± 6 ml/L/h and 142 ± 13 ml/g/h respectively. Major soluble metabolites produced during fermentation were acetic acid and butyric acid. The strain TERI S7 was also observed to produce hydrogen continuously up to 48 h at pH 3.9.  相似文献   

13.
In this study, production of hydrogen (H2) from glucose, xylose, galactose, mannose, arabinose and rhamnose by a strain isolated from activated sludge was investigated. The strain, named as Citrobacter sp. CMC-1, was enriched in cellobiose amended minimal media. Based on 16S rRNA sequence, the CMC-1 strain is a close relative of Citrobacter amalonaticus strain SA01 (99%). Optimal cultivation parameters for H2 production and growth such as pH and temperature were investigated. H2 yields from glucose at optimal conditions (pH 6.0 and 34 °C) were 1.82 ± 0.02 mol-H2/mol-glucose. Strain CMC-1 fermented galactose, mannose, xylose, arabinose and rhamnose. After 48 h incubation, the strain CMC-1 completely fermented all sugars tested, except arabinose. Increase in fermentation period lowered residual formate level in the media and improved H2 production for galactose, mannose and xylose (1.68 ± 0.24, 1.93 ± 0.14 and 1.63 ± 0.07 mol-H2/mol-substrate respectively).  相似文献   

14.
Pre-heated elephant dung was used as inoculum to produce hydrogen from sugarcane bagasse (SCB) hydrolysate. SCB was hydrolyzed by H2SO4 or NaOH at various concentrations (0.25-5% volume) and reaction time of 60 min at 121 °C, 1.5 kg/cm2 in the autoclave. The optimal condition for the pretreatment was obtained when SCB was hydrolyzed by H2SO4 at 1% volume which yielded 11.28 g/L of total sugar (1.46 g glucose/L; 9.10 g xylose/L; 0.72 g arabinose/L). The maximum hydrogen yield of 0.84 mol H2/mol total sugar and the hydrogen production rate of 109.55 mL H2/L day were obtained at the initial pH 6.5 and initial total sugar concentration 10 g/L. Hydrogen-producing bacterium (Clostridium pasteurianum) and non hydrogen-producing bacterium (Flavobacterium sp.) were dominating species in the elephant dung and in hydrogen fermentation broth. Sporolactobacillus sp. was found to be responsible for a low hydrogen yield obtained.  相似文献   

15.
A mesophilic alkaline tolerant fermentative microbe was isolated from estuarine sediment samples and designated as Clostridium butyricum TM-9A, based on 16S rRNA gene sequence. Batch experiments were conducted for investigation of TM-9A strain for its growth and hydrogen productivity from glucose, in an iron containing basal solution supplemented with yeast extract as organic nitrogen source. Hydrogen production started to evolve when cell growth entered exponential phase and reached maximum production rate at late exponential phase. Maximum hydrogen production was observed at 37 °C, initial pH of 8.0 in the presence of 1% glucose. Optimization of process parameters resulted in increase in hydrogen yield from 1.64 to 2.67 mol of H2/mol glucose. Molar yield of H2 increased further from 2.67 to 3.1 mol of H2/mol of glucose with the decrease in hydrogen partial pressure, obtained by lowering the total pressure in the head space of the batch reactor. Acetate and butyrate were the measure volatile fatty acids generated during hydrogen fermentation. TM-9A strain produced hydrogen efficiently from a range of pentose and hexose sugars including di-, tri and poly-saccharides like; xylose, ribose, glucose, rhamnose, galactose, fructose, mannose, sucrose, arabinose, raffinose, cellulose, cellobiose and starch.  相似文献   

16.
Hydrogen producing novel bacterial strain was isolated from formation water from oil producing well. It was identified as Thermoanaerobacter mathranii A3N by 16S rRNA gene sequencing. Hydrogen production by novel strain was pH and substrate dependent and favored pH 8.0 for starch, pH 7.5 for xylose and sucrose, pH 8.0–9.0 for glucose fermentation at 70 °C. The highest H2 yield was 2.64 ± 0.40 mol H2 mol glucose at 10 g/L, 5.36 ± 0.41 mol H2 mol – sucrose at 10 g/L, 17.91 ± 0.16 mmol H2 g – starch at 5 g/L and 2.09 ± 0.21 mol H2 mol xylose at 5 g/L. The maximum specific hydrogen production rates 6.29 (starch), 9.34 (sucrose), 5.76 (xylose) and 4.89 (glucose) mmol/g cell/h. Acetate-type fermentation pathway (approximately 97%) was found to be dominant in strain A3N, whereas butyrate formation was found in sucrose and xylose fermentation. Lactate production increased with high xylose concentrations above 10 g/L.  相似文献   

17.
Xylose and glucose are the major sugar components of lignocellulosic hydrolysate. This study aims to develop thermophilic hydrogen-producing consortia from eight sediments-rich samples of geothermal springs in Southern Thailand by repeated batch cultivation at 60 °C with glucose, xylose and xylose-glucose mixed substrates. Significant hydrogen production potentials were obtained from thermophilic enriched cultures encoded as PGR and YLT with the maximum hydrogen yields of 241.4 and 231.6 mL H2/g sugarconsumed, respectively. After repeated batch cultivation the hydrogen yield from xylose-glucose mixed substrate of PGR increased to 375 mL H2/g sugarconsumed which was 30% higher than that of YLT (287 mL H2/g sugarconsumed). Soluble metabolites from xylose-glucose mixed substrates were composed mostly of butyric acid (20.6-21.8 mM), acetic acid (7.2-13.5 mM), lactic acid (8.2-11.7 mM) and butanol (4.4-13.0 mM). Denaturing gradient gel electrophoresis (DGGE) profiles illustrated small difference in microbial patterns of PGR enriched with glucose, xylose-glucose mixed substrate and xylose. The dominant populations were affiliated with low G + C content Gram-positive bacteria, Thermoanaerobacterium sp., Thermoanaerobacter sp., Caloramater sp. and Anoxybacillus sp. based on the 16S rRNA gene. Cultivation of the enriched culture PGR in oil palm trunk hydrolysate, the maximum hydrogen yield of 301 mL H2/g sugarconsumed was achieved at hydrolysate concentration of 40% (v/v). At higher concentration to 80% (v/v), the hydrogen fermentation process was inhibited. Therefore, the efficient thermophilic hydrogen-producing consortia PGR has successfully developed and has great potential for production of biohydrogen from mixed sugars hydrolysate.  相似文献   

18.
Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 °C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 °C provided a higher H2 production performance than that obtained from cultures at 45 °C, 65 °C, 35 °C and 25 °C. On the other hand, the culture at pH 5 resulted in higher H2 production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 °C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H2 production yield when compared with that from preheatment under neutral condition.  相似文献   

19.
Dark fermentation is a promising biological method for hydrogen production because of its high production rate in the absence of light source and variety of the substrates. In this study, hydrogen production potential of four dark fermentative bacteria (Clostridium butyricum, Clostridium pasteurianum, Clostridium beijerinckii, and Enterobacter aerogenes) using glucose as substrate was investigated under anaerobic conditions. Batch experiments were conducted to study the effects of initial glucose concentration on hydrogen yield, hydrogen production rate and concentration of volatile fatty acids (VFA) in the effluents. Among the four different fermentative bacteria, C. butyricum showed great performance at 10 g/L of glucose with hydrogen production rate of 18.29 mL-H2/L-medium/hand specific hydrogen production rate of 3.90 mL-H2/g-biomass/h. In addition, it was found that the distribution of volatile fatty acids was different among the fermentative bacteria. C. butyricum and C. pasteurianum had higher ratio of acetate to butyrate compared to the other two species, which favored hydrogen generation.  相似文献   

20.
The main objective of the study is to investigate the effect of hydraulic retention times on continuous dark fermentative biohydrogen production in an up-flow packed bed reactor (UPBR) containing a novel microorganism immobilization material namely polyester fiber beads. The hydrogen producing dark fermentative microorganisms were obtained by heat-pretreatment of anaerobic sludge from the acidogenic phase of an anaerobic wastewater treatment plant. Glucose was the sole carbon source and the initial concentration was 15 ± 1 g/L throughout the continuous feeding. UPBR was operated under the thermophilic condition at T = 48 ± 2 °C and at varying HRTs between 2 h and 6 h. The hydrogen productivity of continuously operated UPBR increased with increasing HRT. Hydrogen production volume varied between 4331 and 6624 ml/d, volumetric hydrogen production rates (VHPR) were obtained as 3.09–4.73 L H2/L day, and hydrogen production yields (HY) were 0.49 mol/mol glucose-0.89 mol/mol glucose depending on HRT. Maximum daily hydrogen volume (6624 ml/d), the yield (0.89 mol/mol glucose) and VHPR (4.73 L H2/L day) were obtained at HRT = 6 h. The production rate and the yield decreased with increasing organic loading rate due to substrate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号