首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce a single-step procedure for growing a phase-controllable bilayer-structured TiO2 film directly onto transparent conductive oxide glass by precipitation from hydrolysis of TiCl4 in acid solution containing sulfate ions. The obtained bilayer-structured film with anatase nanoparticles in the inner layer which provide high surface area, and an outer layer of larger rutile particles for incident light scattering. In both the water splitting and the dye-sensitized solar cells under AM 1.5 simulated solar light, the bilayer-structured film outperformed the single layer-structured films with either anatase or rutile TiO2 alone by at least 50%.  相似文献   

2.
Design and preparation of direct Z-scheme anatase/rutile TiO2 nanofiber photocatalyst to enhance photocatalytic H2-production activity via water splitting is of great importance from both theoretical and practical viewpoints. Herein, we develop a facile method for preparing anatase and rutile bi-phase TiO2 nanofibers with changing rutile content via a slow and rapid cooling of calcined electrospun TiO2 nanofibers. The phase structure and composition, surface morphology, specific surface area, surface chemical composition and element chemical states of TiO2 nanofibers were analyzed by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). By a rapid cooling of 500 °C-calcined electrospun TiO2 precursor, anatase/rutile bi-phase TiO2 nanofibers with a roughly equal weight ratio of 55 wt.% anatase and 45 wt.% rutile were prepared. The enhanced H2 production performance was observed in the above obtained anatase/rutile composite TiO2 nanofibers. A Z-scheme photocatalytic mechanism is first proposed to explain the enhanced photocatalytic H2-production activity of anatase/rutile bi-phase TiO2 nanofibers, which is different from the traditional heterojunction electron–hole separation mechanism. This report highlights the importance of phase structure and composition on optimizing photocatalytic activity of TiO2-based material.  相似文献   

3.
Three-dimensional (3D) hierarchical Pt/TiO2@C core-shell nanowire networks with high surface area have been constructed via wet chemical approaches. The 3D TiO2 nanowire framework was in situ synthesized within a porous titanium foam by hydrothermal method followed by carbon coating and self-assembled growth of ultrathin Pt nanowires. Structural characterization indicates that single crystalline ultrathin Pt nanowires of 3–5 nm in diameter were vertically distributed on the anatase TiO2 nanowires covered with a 2–4 nm thin carbon layer. The 3D hierarchical Pt/TiO2@C nanostructure demonstrates evidently higher catalytic activities towards methanol oxidation than the commercial Pt/C catalyst. The catalytic current density of the hierarchical catalyst is 1.6 times as high as that of the commercial Pt/C, and the oxidation onset potential (0.35 V vs. Ag/AgCl) is more negative than the commercial one (0.46 V vs. Ag/AgCl). Synergistic effect between the ultrathin Pt nanowires and the TiO2@C core-shell nanostructure accounts for the enhanced catalytic properties, which can be determined by X-ray photoelectron spectroscopy (XPS) investigation. The obtained hierarchical Pt/TiO2@C nanowire networks promise great potential in producing anode catalysts for direct methanol fuel cells applications.  相似文献   

4.
In this work, we study the effect of the transparent conducting oxide (TCO) and the polymer applied (MEH-PPV or P3HT) on the photovoltaic properties of TCO/TiO2/polymer/Ag bi-layer solar cells. The solar cells were analyzed under inert atmosphere conditions resembling an encapsulated or sealed device. We demonstrate that the substrate applied, ITO or FTO, modifies the crystalline structure of the TiO2: on an ITO substrate, TiO2 is present in its anatase phase, on an FTO, the rutile phase predominates. Devices fabricated on an FTO, where the rutile phase is present, show better stability under inert atmospheres than devices fabricated on an ITO, anatase phase. With respect to the polymer, devices based on MEH-PPV show higher Voc (as high as 1 V), while the application of P3HT results in lower Voc, but higher Jsc and longer device stability. These observations have been associated to (a), the crystalline structure of TiO2 and (b) to the form the polymer is bonded to the TiO2 surface. In-situ IPCE analyses of P3HT-based solar cells show a red shift on the peak corresponding to TiO2, which is not present on the MEH-PPV-based solar cells. The latter suggest that P3HT can be linked to the TiO2 though the S-end atom, which results in devices with lower Voc. All these observations are also valid for devices, where the bare TiO2 is replaced by an Nb-TiO2. The application of an Nb-TiO2 with rutile structure in these polymer/oxide solar cells is the reason for their higher stability under inert atmospheres. We conclude that the application of TiO2 in its rutile phase is beneficial for long-term stability devices. Moreover there is an interplay between low Voc and Jsc in devices applying P3HT, since power conversion efficiency can be partially canceled by their lower Voc in comparison with MEH-PPV. These findings are important for polymer/oxide solar cells, but also for organic solar cells, where a layer of semiconductor oxides are in direct contact with a polymer, like in an inverted or tandem organic solar cells.  相似文献   

5.
Innovative TiO2/SnO2 nanofibers were fabricated via electrospinning an innovated precursor solution and used for photocatalytic H2 generation. The nanofibers exhibited greatly enhanced H2 evolution rate compared to bare TiO2 nanofiber and P25. The enhanced efficiency of the TiO2/SnO2 nanofibers was attributed to its excellent synergistic properties: (1) its good mesoporosity; (2) the red-shift of absorbance spectra to enhance light absorbance capability; (3) its long nanofibrous structure and (4) anatase TiO2 – rutile TiO2 – rutile SnO2 ternary junctions favorable for the separation of electrons and holes. Based on our experimental results, the optimum ratio of TiO2/SnO2 nanofibers with 3% Sn demonstrated the highest efficiency in H2 generation.  相似文献   

6.
Photoinduced electron transfer between anatase and rutile in nanosized TiO2, prepared by a sol–gel method, was revealed by means of the surface photovoltage technique, and its effects on the photocatalytic performance in the degradation of a phenol solution were investigated. Also, the role of the surface states during the processes of photo-physics and photochemical reactions was discussed. In the as-prepared TiO2 sample consisting of anatase and rutile, the photoinduced electrons can easily transfer from anatase surface states to rutile, as well as from anatase conduction band to rutile. These factors are responsible for the strong surface photovoltage response and high photocatalytic activity. Moreover, the surface states related to oxygen vacancies can induce photocatalytic reactions under visible irradiation, especially in the resulting biphase TiO2, due to the electron transfer from anatase surface states to rutile.  相似文献   

7.
The morphological evolution of specimen taken out after the different duration in TiCl3 solution was investigated by field emission scanning electron microscopy (FE-SEM). The rutile TiO2 splitting microspheres may be formed by the splitting crystal growth mechanism through the multistep process. The microsphere composed of the 20 nm width nanorods was in the range of 1.5–2.5 μm in the diameter. The dye-sensitized solar cell (DSC) based on the microspheres received 3.57% conversion efficiency under simulated AM 1.5 (100 mW/cm2) solar illumination, which exhibited remarkably higher charge collection efficiency and light scattering compared to that of P25. Electrochemical impedance spectroscopy (EIS) measurement revealed that impedance resistance at the surface of single-crystalline rutile TiO2 splitting microspheres was 6 times larger than that of P25 nanoparticles, indicating electron recombination was significantly retarded.  相似文献   

8.
Single crystalline TiO2 nanorods and polycrystalline nanotubes were fabricated with same length to investigate the effects of their nanostructures on photocatalytic properties for splitting water. In order to enhance the visible light absorbance, TiO2 nanorods and nanotubes were sensitized with semiconductor nanoparticles such as CdS, CdSe, and CdS/CdSe, and compared in viewpoint of solar hydrogen generation. It was observed that single-crystalline nanorods showed superior photocatalytic properties to polycrystalline nanotubes, and also the potential level of the nanorods with rutile phase was measured as lower than that of the nanotubes with mixture of anatase and rutile. Further improvement of photo-conversion efficiency was obtained by subsequent heat treatments of the sensitized photoelectrodes. It turns out that the improvement is attributed to the improved crystallinity and the increased size of the nanoparticles during the post-annealing treatments. It was demonstrated that TiO2 nanorods with lower potential level and a single crystalline phase on FTO glass were advantageous for effective charge injection from the sensitized nanoparticles and transport without recombination lost at grain boundaries.  相似文献   

9.
The mismatched interfaces of heterojunction usually have lots of defects, deriving in recombination of generated electron-hole pairs. On the other hand, homojunction interfaces are considered to be beneficial to the separation of charge carriers due to the similar characteristics in two sides of homojunction. TiO2 have rutile and anatase two typical photoactive phases in nature. In this work, TiO2-rutile/anatase (TiO2-R/A) homojunction photoanode is fabricated by in situ growth of anatase TiO2 on TiO2-R surface. By contrast with TiO2-rutile/rutile (TiO2-R/R) photoanode, TiO2-R/A displays higher photocurrent density (1.70 mA cm?2 at 0.6 V vs. SCE). Deep insight into the mechanism suggests that TiO2-R/A homojunction has intense band bending and enhanced surface area, which facilitate the charge separation and transmission. This study offers some novel insights to design and fabricate semiconductors photoanodes for highly efficient photocatalytic reactions.  相似文献   

10.
Water splitting is widely employed for the hydrogen production for its abundant sources of water and sunlight. The TiO2 nanostructures are the most promising materials because of their properties of the non-toxicity and relatively low cost. Surface treatments with TiCl4 solution and titanium butoxide solution are applied on the TiO2 nanorod arrays respectively. On the surface of the TiO2 nanorods, TiO2 nanoparticles are prepared through hydrolysis of TiCl4 and homogeneous phase of TiO2 synthesized with assist of second hydrothermal synthesis in titanium butoxide, resulting in the increase of the surface area of the TiO2. Comparing with that of the original TiO2 nanorod arrays, the incident photon-to-electron conversion efficiency (IPCE) of the TiO2–TiCl4 and TiO2–H2O samples is greatly enhanced by 25% and 250% in the ultraviolet region, respectively. The obviously enhanced activity is due to the larger surface structure after treatments, which could contribute to the improved performance in the water splitting. These surface treatments provide an efficient way to regulate the properties of the TiO2 nanorod arrays for their extensive applications in the solar device for the hydrogen production.  相似文献   

11.
Abstract

TiO2 nanowire arrays with mixed phases are directly grown on Ti foil using a facile hydrothermal method. X-ray diffraction and Raman spectroscopy analyses indicate that the hybrid samples consist of mixed crystallographic phases of anatase and TiO2(B). Morphological characterisation shows that the samples have a unique nanostructure with ultra long, fine and uniform nanowires. Compared with the standard Degussa P25 TiO2 nanoparticles, the hybrid TiO2 nanowire arrays exhibit larger reversible capacity, improved cycling stability and rate capability, which can be attributed to their hybrid nanowire array structure.  相似文献   

12.
As a new type of electrodes engineering method with three-dimensional (3D) architecture for 3D rechargeable lithium ion batteries, an electrospinning has been successfully employed to prepare 3D net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. Scanning electron microscopy, X-ray diffraction, cyclic voltammetry and the discharge/charge measurements were used to characterize their structures and electrochemical properties. Our results demonstrated that 3D architectures stacked from a cross-bar array of electrospun anatase TiO2 nanofibers could be accomplished but were destroyed after the insertion of Li ion. Significantly, spinel Li4Ti5O12 could be selected as one of promise candidates for the realization of 3D batteries considering its structure stability of 3D spinel Li4Ti5O12 nanofibers associated with well cyclability.  相似文献   

13.
Rutile and anatase TiO2 films have been grown on Ti plates by thermal (500–800°C) and anodic oxidation followed by thermal annealing (400–500°C), respectively. The photoelectrochemical efficiency of these photoanodes, evaluated by current density measurements in the photooxidation of 4-methoxybenzyl alcohol in deaerated CH3CN, has been determined. The photocurrent efficiency increases with the thickness of the TiO2 rutile film up to 1 μm (the most efficient thickness). At the wavelengths furnished by the irradiation apparatus similar thicknesses of anatase and rutile films show nearly the same efficiencies. Anodic bias produces similar relative increases of current intensity in both crystalline forms.  相似文献   

14.
An efficient hierarchical structure, nano-branch containing anatase TiO2 nanofibers and rutile nanorods, was prepared via the combination of the electrospinning and hydrothermal processes. This novel configuration of TiO2 multiphase possessed higher surface area, roughness, and fill factors compared with each single phase component prepared in the same condition, which significantly enhanced its light absorption. Our experimental results showed that within the interface of multiphase TiO2, the heterojunction promoted the charge separation and improved the charge transfer rate, leading to higher efficiency for photoelectrochemical water splitting. The photocurrent density of the nano-branched TiO2 electrode could reach 0.95 mA/cm2, which was almost twice as large as that of the pristine TiO2 nanorod. Our work provides a simple and feasible routine to synthesize complex TiO2 nanoarchitectures, which lays a foundation for improving energy storage and conversion efficiency of TiO2-based photoelectrodes.  相似文献   

15.
The design of photoanode with highly efficient light harvesting and charge collection properties is important in photoelectrochemical (PEC) cell performance for hydrogen production. Here, we report the hierarchical In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode (ITO/TiO2/CdS-nanowire array photoanode) as it provides a short travel distance for charge carrier and long light absorption pathway by scattering effect. In addition, optical properties and device performance of the ITO/TiO2/CdS-nanowire array photoanode were compared with the TiO2 nanoparticle/CdS photoanode. The photocatalytic properties for water splitting were measured in the presence of sacrificial agent such as SO32− and S2− ions. Under illumination (AM 1.5G, 100 mW/cm2), ITO/TiO2/CdS-nanowire array photoanode exhibits a photocurrent density of 8.36 mA/cm2 at 0 V versus Ag/AgCl, which is four times higher than the TiO2 nanoparticle/CdS photoanode. The maximum applied bias photon-to-current efficiency for the ITO/TiO2/CdS-nanowire array and the TiO2 nanoparticle/CdS photoanode were 3.33% and 2.09%, respectively. The improved light harvesting and the charge collection properties due to the increased light absorption pathway and reduced electron travel distance by ITO nanowire lead to enhancement of PEC performance.  相似文献   

16.
Hierarchical architecture of anatase/rutile-mixed phases TiO2 with hollow interior was successfully fabricated via a Topotactic synthetic method, including the synthesis of CaTiO3 precursors and transforming them into TiO2 through ion-exchange process. The as-synthesized TiO2 hierarchical architectures as the anode materials were used as lithium-ion batteries (LIBs). Compared with TiO2 samples, the TiO2@SnO2-5% shows the improved lithium storage capacity, cycling performance and rate properties. The impedance of the TiO2 electrode decreases evidently after adding few amount of SnO2. The hollow hierarchical structure with different compositions provide much more active sites, and well connect interface among anatase, rutile, and SnO2, facilitating the electron and ion transport quickly and efficiently. Addition appropriate number of SnO2 not only well kept the hierarchical architecture but also enhanced the capacity and conductivity of the TiO2 sample. As a result, TiO2@SnO2-5% exhibited excellent lithium storage performance.  相似文献   

17.
The microstructural properties of nanosized TiO2 micelles, generated in situ in a water-in-oil (w/o) microemulsion composed of water, dioctyl sulfosuccinate sodiun salt (AOT) and cyclohexane, by controlled hydrolysis of TiCl4, were investigated. The samples were characterized by analytical electron microscopy combining electron diffraction. TiO2 film consisted of isotropic grains of anatase. The grain sizes were 5 nm, which is in agreement with the average grain size R, previously obtained by grazing-incidence wide-angle X-ray diffraction (GIWAXD), of 5.0±1.3 nm. Grains were gathered in a number of clusters, differently oriented with respect to the electron beam.  相似文献   

18.
The influence of redox-treated Pt/TiO2 photocatalysts on H2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV–vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.  相似文献   

19.
Simple soft-solution method has been developed to synthesize films and powders of TiO2 and mixed TiO2–SiO2 at relatively low temperatures. This method is simple and inexpensive. Furthermore, reactor can be designed for large-scale applications as well as to produce large quantities of composite powders in a single step. For the preparation of TiO2, we used aqueous acidic medium containing TiOSO4 and H2O2, which results in a peroxo-titanium precursor while colloidal SiO2 has been added to the precursor for the formation of TiO2–SiO2. Post annealing at 500 °C is necessary to have anatase structure. Resulting films and powders were characterized by different techniques. TiO2 (anatase) phase with (1 0 1) preferred orientation has been obtained. Also in TiO2–SiO2 mixed films and powders, TiO2 (anatase) phase was found. Fourier transform infrared spectroscopy (FTIR) results for TiO2 and mixed TiO2–SiO2 films have been presented and discussed. The method developed in this paper allowed obtaining compact and homogeneous TiO2 films. These compact films are highly photoactive when TiO2 is used as photo anode in an photoelectrochemical cell. Nanoporous morphology is obtained when SiO2 colloids are added into the solution.  相似文献   

20.
In this study, we have developed a facile chemical bath deposition (CBD) method to grow p-type Cu2O nanoparticles on n-type TiO2 nanowire arrays (TiO2 NWAs) to fabricate TiO2/Cu2O core/shell heterojunction nanowire arrays (TiO2/Cu2O core/shell NWAs). When used as photoelectrode, the fabricated TiO2/Cu2O core/shell NWAs show improved photoelectrochemical (PEC) water splitting activity to pure TiO2 NWAs. The effects of the CBD cycle times on the PEC activities have been studied. The TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode prepared by cycling 5 times in the CBD process achieves the highest photocurrent of 2.5 mA cm?2, which is 2.5 times higher than that of pure TiO2 NWAs. In addition, the H2 generation rate of this photoelectrode reaches to 32 μmol h?1 cm?2, 1.7 times higher than that of pure TiO2 NWAs. Furthermore, the TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode shows excellent photostability and achieves a stable photocurrent of over 2.3 mA cm?2 during long light illumination time of 5 h. The enhanced photocatalytic activity of TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode is attributed to the synergistic actions of TiO2 and Cu2O for improving visible light harvesting, and efficient transfer and separation of photogenerated electrons and holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号