首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three kinds of Ce0.8Zr0.2O2 solid solutions synthesized via surfactant-assisted route, co-precipitation, and sol–gel method were used as supports of Ni-based catalysts by impregnation. Their catalytic activities in ammonia decomposition to hydrogen were tested, and the structural effect of support and the influence of nickel content on catalytic activity were evaluated. Mesoporous/high-surface-area Ce0.8Zr0.2O2 support synthesized by surfactant-assisted method exhibited better promoting effect than other supports when the same content of Ni was loaded. The interactions between Ni species and Ce0.8Zr0.2O2 supports were found to greatly affect the chemical properties of catalysts, including redox, H2 adsorption, and catalysis. The promoting effects of Ce in catalysts, plentiful vacancies in the solid solutions due to the doping of Zr4+, and high surface areas of the supports were discussed on the ammonia decomposition activities of the resultant catalysts, as well as the influence of hydrogen spillover. The ammonia conversion of 95.7% with the H2 producing rate of 89.3 mL/min·gcat was achieved at 550 °C over the Ni catalysts supported on the mesoporous/high-surface-area Ce0.8Zr0.2O2.  相似文献   

2.
The CeO2/CuO and CuO/CeO2 catalysts were synthesized by the hydrothermal method and characterized via XRD, SEM, H2-TPR, HRTEM, XPS and N2 adsorption–desorption techniques. The study shows that the rod-like structure is self-assembled CeO2, and both hydrothermal time and Ce/Cu molar ratio are important factors when the particle-like CeO2 is being self-assembled into the rod-like CeO2. The CuO is key active component in the CO-PROX reaction, and its reduction has a negative influence on the selective oxidation of CO. The advantage of the inverse CeO2/CuO catalyst is that it still can provide sufficient CuO for CO oxidation before 200 °C in the hydrogen-rich reductive gasses. The traditional CuO/CeO2 catalyst shows better activity at lower temperature and the inverse CeO2/CuO catalysts present higher CO2 selectivity when the CO conversion reaches 100%. The performance of mixed sample verifies that they might be complementary in the CO-PROX system.  相似文献   

3.
Monolithic catalysts were prepared by washcoating Ce0.8Zr0.2O2 slurries and then impregnating platinum or rhenium onto cordierite substrates, and characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), inductively coupled plasma (ICP), temperature-programmed-reduction (TPR) and temperature-programmed deposition of CO (CO-TPD) techniques. The effects of preparation parameters on the catalytic performance for water gas shift (WGS) reaction were investigated in details, including different Ce0.8Zr0.2O2 powder as washcoat, coat loadings, metal loadings, Pt/Re weight ratio and impregnation sequences. In addition, pyrophoricity (exposure to oxygen stream) and long-term stability were carried out over monolithic catalysts with the optimized composition. The results showed that Ce0.8Zr0.2O2 prepared by microemulsion methods was the preferred washcoat, and that 50 wt% Ce0.8Zr0.2O2 coat loading and 0.68 wt% Pt loading were required to reduce CO content to ca. 1%. The optimal catalytic performance was achieved over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst. Pyrophoricity tests indicated that no obvious activity loss was observed over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst after three exposures to oxygen; while 17% of the initial activity was lost over industrial B206 after one exposure. Monolithic 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst exhibited good stability during 80 h on-stream test.  相似文献   

4.
The effect of preparation method on MgO-promoted Ni–Ce0.8Zr0.2O2 catalysts was investigated in CO2 reforming of CH4. Co-precipitated Ni–MgO–Ce0.8Zr0.2O2 exhibited very high activity as well as stability (XCH4 > 95% at 800 °C for 200 h) due to high surface area, high dispersion of Ni, small Ni crystallite size, and easier reducibility. Four elements (Ni, Mg, Ce, and Zr) are located at the same position for the co-precipitated catalyst, resulting in easier reducibility.  相似文献   

5.
The synthesis and formation mechanism of the nano-sized Ce0.8Sm0.2O1.9 particles prepared by a urea-based low-temperature hydrothermal process was investigated in this study. From ex situ X-ray diffraction and induced coupled plasma-atomic emission spectroscopy investigations, it was found that large quantities of cerium hydroxide co-precipitated with some samarium hydroxide at the initial stage of the hydrothermal process. The remaining Sm3+ ions in the solutions were further hydrolyzed and deposited on the surface of the cerium hydroxide-rich precipitates to form a core–shell-like structure. During the hydrothermal process, the core–shell-like structure transformed to a single cubic fluorite phase which is due to the incorporation of the deposited samarium hydroxide into the cerium oxide-rich core. Further, the average grain size of the synthesized nanocrystalline Ce0.8Sm0.2O1.9 was reduced with increasing the urea concentration in the solution. The density of the disk prepared with the synthesized Ce0.8Sm0.2O1.9 powders was found to increase with a decrease in the grain size of Ce0.8Sm0.2O1.9. The existence of SO42− anions in the SDC powders prepared at low-urea concentration may result in the SDC disks with low density due to their decomposition during sintering process.  相似文献   

6.
The composition (CuO/ZnO/Al2O3 = 30/60/10) of a commercial catalyst G66B was used as a reference for designing CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts for the oxidative (or combined) steam reforming of methanol (OSRM). The effects of Al2O3, CeO2 and ZrO2 on the OSRM reaction were clearly identified. CeO2, ZrO2 and Al2O3 all promoted the dispersions of CuO and ZnO in CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Aluminum oxide lowered the reducibility of the catalyst, and weakened the OSRM reaction. Cerium oxide increased the reducibility of the catalyst, but weakened the reaction. Zirconium oxide improved the reducibility of the catalyst, and promoted the reaction. A lower CuO/ZnO ratio of the catalyst was associated with greater promotion of ZrO2. The critical CuO/ZnO ratio for the promotion of ZrO2 was approximately 0.75–0.8. Introducing of ZrO2 into CuO/ZnO/Al2O3 also improved the stability of the catalyst. Although Al2O3 inhibited the OSRM reaction, a certain amount of it was required to ensure the stability and the mechanical strength of the catalysts.  相似文献   

7.
The water–gas shift (WGS) reaction was examined over Pt and Pt–CeOx catalysts supported on CexZr1−xO2 (Ce0.05Zr0.95O2, Ce0.2Zr0.8O2, Ce0.4Zr0.6O2, Ce0.6Zr0.4O2, Ce0.7Zr0.3O2 and Ce0.8Zr0.2O2) under severe reaction conditions, viz. 6.7 mol% CO, 6.7 mol% CO2, and 33.2 mol% H2O in H2. The catalysts were characterized with several techniques, including X-ray diffraction (XRD), CO chemisorption, temperature-programmed reduction (TPR) with H2, temperature-programmed oxidation (TPO), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and bright-field transmission electron microscopy (TEM). Among the supported Pt catalysts tested, Pt/Ce0.4Zr0.6O2 showed the highest WGS activity in all temperature ranges. An improvement in the WGS activity was observed when CeOx was added with Pt on CexZr1−xO2 supports (x = 0.05 and 0.2) due to intimate contact between Pt and CeOx species. Based on CO chemisorptions and TPR profiles, it has been found that the interaction between Pt species and surface ceria-zirconia species is beneficial to the WGS reaction. A gradual decrease in the catalytic activity with time-on-stream was found over Pt and Pt–CeOx catalysts supported on CexZr1−xO2, which can be explained by a decrease in the Pt dispersion. The participation of surface carbonate species on deactivation appeared to be minor because no improvement in the catalytic activity was found after the regeneration step where the aged catalyst was calcined in 10 mol% O2 in He at 773 K and subsequently reduced in H2 at 673 K.  相似文献   

8.
Ni–Cu–Ce0.8Sm0.2O1.9 anode-supported single cells were developed for the direct utilization of methane. An yttria-doped zirconia and Ce0.8Sm0.2O1.9 bi-layer electrolyte and a La0.6Sr0.4Co0.2Fe0.8O3 − δ cathode layer were fabricated by slurry spin-coating. Cu was added to the anode by impregnation with a nitrate solution. The effects of Cu on the electrochemical performance of the anode were investigated in dry methane with respect to times of impregnation. Impregnation with Cu twice was determined to be optimal. Incorporating Cu into the anode improved electrochemical performance of the cells, reducing ohmic resistance and suppressing carbon deposition. At 700 °C, the single cell exhibited a maximum power density of 406 mW/cm2 in dry methane. At a current density of 500 mA/cm2, the cell maintained 98.6% of its initial voltage after operation for 900 min.  相似文献   

9.
The application of the catalytic system CuO/CeO2 supported on Zr doped SBA-15 mesoporous silica to the preferential oxidation of CO on hydrogen streams (CO-PROX) suitable to be used to feed PEM fuel cells, has been studied. A loading of 20% (wt.) Ce and 6% (wt.) Cu was found optimal for the CO-PROX reaction. The influence of the presence of CO2 and H2O in the gas feed was also studied in order to simulate the real operation conditions of a PEMFC feed stream generated by alcohol steam reforming. The catalysts were characterized by XRD, adsorption-desorption of N2 at −196 °C, TEM, -H2-TPR and XPS. The system reducibility was found modified by the incorporation of zirconium in the support, with improvement of both the conversion and selectivity of the catalytic system, compared to the same material without Zr.  相似文献   

10.
Nanocrystalline Ce0.8Sm0.2O1.9 (SDC) has been synthesized by a combined EDTA–citrate complexing sol–gel process for low temperature solid oxide fuel cells (SOFCs) based on composite electrolyte. A range of techniques including X-ray diffraction (XRD), and electron microscopy (SEM and TEM) have been employed to characterize the SDC and the composite electrolyte. The influence of pH values and citric acid-to-metal ions ratios (C/M) on lattice constant, crystallite size and conductivity has been investigated. Composite electrolyte consisting of SDC derived from different synthesis conditions and binary carbonates (Li2CO3–Na2CO3) has been prepared and conduction mechanism is discussed. Water was observed on both anode and cathode side during the fuel cell operation, indicating the composite electrolyte is co-ionic conductor possessing H+ and O2− conduction. The variation of composite electrolyte conductivity and fuel cell power output with different synthesis conditions was in accordance with that of the SDC originated from different precursors, demonstrating O2− conduction is predominant in the conduction process. A maximum power density of 817 mW cm−2 at 600 °C and 605 mW cm−2 at 500 °C was achieved for fuel cell based on composite electrolyte.  相似文献   

11.
Ce0.75Zr0.25O2 solid solution supported Ru catalysts were prepared and tested for CH4–CO2 reforming. The effect of Ru content on the properties of the catalysts was investigated by means of N2 adsorption–desorption, H2-TPR/MS, XRD, XPS, CO chemisorption and H2-TPD/MS. It was found that the highly dispersed Ru species favored the interaction between Ru and Ce0.75Zr0.25O2. The reduced Ce0.75Zr0.25O2 was able to store hydrogen, while Ru promoted the reduction of Ce0.75Zr0.25O2. Under the identical conditions, the CH4 and CO2 conversions of the catalysts increased with the increase of Ru content, however, the turnover frequencies of CH4 and CO2 were higher for the catalysts with lower Ru contents, which may be resulted from the strong interaction between Ru and Ce0.75Zr0.25O2. The Ru catalyst exhibited good stability and excellent resistance to carbon deposition. Remarkably, zirconium and cerium hydrides were detected in the used catalyst, which may participate in the elimination of the carbon deposit. Apart from the nature of metallic Ru and the redox property of Ce0.75Zr0.25O2, we suggest that the excellent resistance of the catalyst to carbon deposition is also attributed to the hydrogen storage of the reduced Ce0.75Zr0.25O2.  相似文献   

12.
A series of CeO2 supports were firstly prepared by precipitation method with NH3⋅H2O (NH), (NH4)2CO3 (NC) and K2CO3 (KC) as precipitant, respectively, and then CuO/CeO2 catalysts were fabricated by depositing CuO on the as-obtained CeO2 supports by deposition-precipitation method. The effect of CeO2 supports prepared from different precipitants on the catalytic performance, physical and chemical properties of CuO/CeO2 catalysts was investigated with the aid of XRD, N2-physisorption, N2O chemisorption, FT-IR, TG, H2-TPR, CO2-TPD and cyclic voltammetry (CV) characterizations. The CuO/CeO2 catalysts were examined with respect to their catalytic performance for the water-gas shift reaction, and their catalytic activities and stabilities are ranked as: CuO/CeO2-NH > CuO/CeO2-NC > CuO/CeO2-KC. Correlating to the characteristic results, it is found that the CeO2 support prepared by precipitation with NH3⋅H2O as precipitant (i.e., CeO2-NH-300) has the best thermal stability and least surface “carbonate-like” species, which make the corresponding CuO/CeO2-NH catalyst presents the highest Cu-dispersion, the highest microstrain (i.e., the highest surface energy) of CuO, the strongest reducibility and the weakest basicity. While, the precipitants that contain CO32- (e.g. (NH4)2CO3 and K2CO3) result in more surface “carbonate-like” species of CeO2 supports and CuO/CeO2 catalysts. As a result, CuO/CeO2-NC and CuO/CeO2-KC catalysts present poor catalytic performance.  相似文献   

13.
The CuO supports with different morphology were prepared using the precipitation method. The inverse CeO2/CuO catalysts were synthesized by the impregnation method, and characterized via XRD, H2-TPR, SEM, TEM, XPS and N2 adsorption-desorption techniques. The study showed that CO oxidation took place at the interface of CeO2–CuO catalysts. The CeO2/CuO catalysts maintained their morphologies, structure and the length of periphery at the CeO2–CuO interface in the hydrogen-rich reaction gasses during the reaction. The two-dimensional and homogeneous petal morphology of support was most favorable for the formation of long periphery at the CeO2–CuO interface, therefore the CeO2 supported on the CuO with petal morphology presented good catalytic activity.  相似文献   

14.
The effect of CeO2 loading amount of Ru/CeO2/Al2O3 on CO2 methanation activity and CH4 selectivity was studied. The CO2 reaction rate was increased by adding CeO2 to Ru/Al2O3, and the order of CO2 reaction rate at 250 °C is Ru/30%CeO2/Al2O3 > Ru/60%CeO2/Al2O3 > Ru/CeO2 > Ru/Al2O3. With a decrease in CeO2 loading of Ru/CeO2/Al2O3 from 98% to 30%, partial reduction of CeO2 surface was promoted and the specific surface area was enlarged. Furthermore, it was observed using FTIR technique that intermediates of CO2 methanation, such as formate and carbonate species, reacted with H2 faster over Ru/30%CeO2/Al2O3 and Ru/CeO2 than over Ru/Al2O3. These could result in the high CO2 reaction rate over CeO2-containing catalysts. As for the selectivity to CH4, Ru/30%CeO2/Al2O3 exhibited high CH4 selectivity compared with Ru/CeO2, due to prompt CO conversion into CH4 over Ru/30%CeO2/Al2O3.  相似文献   

15.
CuO/CeO2, CuO/Al2O3 and CuO/CeO2-Al2O3 catalysts, with CuO loading varying from 1 to 5 wt.%, were prepared by the citrate method and applied to the preferential oxidation of carbon monoxide in a reaction medium containing large amounts of hydrogen (PROX-CO). The compounds were characterized ex situ by X-ray diffraction, specific surface area measurements, temperature-programmed reduction and temperature-programmed reduction of oxidized surfaces; XANES-PROX in situ experiments were also carried out to study the copper oxidation state under PROX-CO conditions. These analyses showed that in the reaction medium the Cu0 is present as dispersed particles. On the ceria, these metallic particles are smaller and more finely dispersed, resulting in a stronger metal-support interaction than in CuO/Al2O3 or CuO/CeO2-Al2O3 catalysts, providing higher PROX-CO activity and better selectivity in the conversion of CO to CO2 despite the greater BET area presented by samples supported on alumina. It is also shown that the lower CuO content, the higher metal dispersion and consequently the catalytic activity. The redox properties of the ceria support also contributed to catalytic performance.  相似文献   

16.
The mesoporous Co3O4 supported catalysts on Ce–M–O (M = Mn, Zr, Sn, Fe and Ti) composites were prepared by surfactant-assisted co-precipitation with subsequent incipient wetness impregnation (SACP–IWI) method. The catalysts were employed to eliminate trace CO from H2-rich gases through CO preferential oxidation (CO PROX) reaction. Effects of M type in Ce–M–O support, atomic ratio of Ce/(Ce + Mn), Co3O4 loading and the presence of H2O and CO2 in feed were investigated. Among the studied Ce–M–O composites, the Ce–Mn–O is a superior carrier to the others for supported Co3O4 catalysts in CO PROX reaction. Co3O4/Ce0.9Mn0.1O2 with 25 wt.% loading exhibits excellent catalytic properties and the 100% CO conversion can be achieved at 125–200 °C. Even with 10 vol.% H2O and 10 vol.% CO2 in feed, the complete CO transformation can still be maintained at a wide temperature range of 190–225 °C. Characterization techniques containing N2 adsorption/desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and scanning electron microscopy (SEM) were employed to reveal the relationship between the nature and catalytic performance of the developed catalysts. Results show that the specific surface area doesn’t obviously affect the catalytic performance of the supported cobalt catalysts, but the right M type in carrier with appropriate amount effectively improves the Co3O4 dispersibility and the redox behavior of the catalysts. The large reducible Co3+ amount and the high tolerance to reduction atmosphere resulted from the interfacial interaction between Co3O4 and Ce–Mn support may significantly contribute to the high catalytic performance for CO PROX reaction, even in the simulated syngas.  相似文献   

17.
H. Kaneko 《Solar Energy》2011,85(9):2321-2330
The O2-releasing reaction under the air with the reactive ceramics of CeO2-ZrO2 oxides which can be applied to solar hydrogen production via a two-step water splitting cycle using concentrated solar thermal energy was investigated. CeO2-ZrO2 oxides were synthesized by polymerized complex method at different Ce:Zr molar ratio. The solid solubility of ZrO2 in fluorite structure of CeO2 was in good agreement with the initial content of Zr ions at the preparation in CeO2-ZrO2 oxide. The O2-releasing reaction in air with CeO2-ZrO2 oxides was studied. Different solid solubility (0%, 10%, 20%, 30%) of ZrO2 in CeO2 were examined. The amount of O2 gas evolved in the reaction with Ce1−xZrxO2 (0 ? x ? 0.3) solid solutions was more than that with CeO2, and the largest yield of 2.9 cm3/g was exhibited at x = 0.2 (Ce0.8Zr0.2O2) for an O2 release at 1500 °C in air. The reduced cerium ion in Ce0.8Zr0.2O2 was about 11%, which is seven times higher than that with CeO2. The optical absorption and luminescence spectra of the CeO2-ZrO2 oxide obtained before and after the O2-releasing reaction suggest that the reduction of Ce4+ with formation of oxygen defect in the air. The enhancement of the O2-releasing reaction with CeO2-ZrO2 oxide is found to be caused by an introduction of Zr4+, which has smaller ionic radius than Ce3+ or Ce4+, in the fluorite structure.  相似文献   

18.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

19.
For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology, suitable materials and structures which enable operation at lower temperatures, while retaining high cell performance, must be developed. Recently, the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 oxide has shown potential as an intermediate temperature SOFC cathode. An equivalent circuit describing the cathode polarization resistances was constructed from analyzing impedance spectra recorded at different temperatures in oxygen. A competitive electrode polarization resistance is reported for this oxygen electrode using a Ce0.8Gd0.2O1.9 electrolyte, determined by impedance spectroscopy studies of symmetrical cells sintered at 800 °C and 1000 °C. Scanning electron microscopy (SEM) studies of the symmetrical cells revealed the absence of any reaction layer between cathode and electrolyte, and a porous electrode microstructure even when sintered at a temperature of only 800 °C. The performance of this cathode shows favorable oxygen reduction reaction (ORR) properties potentially making it an excellent choice for IT-SOFC application.  相似文献   

20.
A dense membrane of Ce0.9Gd0.1O1.95 on a porous cathode based on a mixed conducting La0.6Sr0.4Co0.2Fe0.8O3−δ was fabricated via a slurry coating/co-firing process. With the purpose of matching of shrinkage between the support cathode and the supported membrane, nano-Ce0.9Gd0.1O1.95 powder with specific surface area of 30 m2 g−1 was synthesized by a newly devised coprecipitation to make the low-temperature sinterable electrolyte, whereas 39 m2 g−1 nano-Ce0.9Gd0.1O1.95 prepared from citrate method was added to the cathode to favor the shrinkage for the La0.6Sr0.4Co0.2Fe0.8O3−δ. Bi-layers consisting of <20 μm dense ceria film on 2 mm thick porous cathode were successfully fabricated at 1200 °C. This was followed by co-firing with NiO–Ce0.9Gd0.1O1.95 at 1100 °C to form a thin, porous, and well-adherent anode. The laboratory-sized cathode-supported cell was shown to operate below 600 °C, and the maximum power density obtained was 35 mW cm−2 at 550 °C, 60 mW cm−2 at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号