首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-dependent hydrogen production by platinized Photosystem I isolated from the cyanobacterium Thermosynechococcus elongatus BP-1 was optimized using response surface methodology (RSM). The process parameters studied included temperature, light intensity and wavelength, and platinum salt concentration. Application of RSM generated a model that agrees well with the data for H2 yield (R2 = 0.99 and p < 0.001). Significant effects on the total H2 yield were seen when the platinum salt concentration and temperature were varied during platinization. However, light intensity during platinization had a minimal effect on the total H2 yield within the region studied. The values of the parameters used during the platinization that optimized the production of H2 were light intensity of 240 μE m−2 s−1, platinum salt concentration of 636 μM and temperature of 31 °C. A subsequent validation experiment at the predicted conditions for optimal process yield gave the maximum H2 yield measured in the study, which was 8.02 μmol H2 per mg chlorophyll.  相似文献   

2.
A newly enriched marine phototrophic bacterial consort was studied for its capability of hydrogen production in batch cultivations using butyrate as the sole carbon source. Analyses of denaturing gradient gel electrophoresis (DGGE) profiles showed that the mixed bacterial consort consisted mainly of Ectothiorhodospira, Sporolactobacillus, and Rhodovulum. Important parameters investigated include temperature, light intensity, initial pH, and butyrate concentration. The pH of the culture medium significantly increased as fermentation proceeded. Optimal cell growth was observed at temperature of 25–35 °C, light intensity of 80–120 μmol photons/m2 s, initial pH of 8, butyrate concentration of 20–40 mmol/l. Optimal conditions for hydrogen production were 30 °C, light intensity of 80 μmol photons/m2 s, initial pH 8. The increase of butyrate concentration (10–50 mmol/l) resulted in higher hydrogen production, but the yield of hydrogen production (mol H2/mol butyrate) gradually decreased with increasing butyrate concentration. The maximal hydrogen yield and hydrogen production rate were estimated to be 2.52 ± 0.12 mol H2/mol butyrate and 19.40 ± 2.32 ml/l h, respectively. These results indicate that optimization of the culture conditions resulted in a simultaneous increase in biohydrogen production and cell growth.  相似文献   

3.
Rhodobacter sphaeroides O.U. 001 (concentration of inoculum-0.36 g dry wt/l) and brewery wastewaters were applied in photobiogeneration of hydrogen under illumination of 116 W/m2. The best results were obtained with filtered wastewaters sterilized at 120 °C for 20 min and maximal concentration of waste in medium equal 10% v/v. The main product in generated biogas was hydrogen (90%). After sterilization the amount of generated hydrogen was tripled (from 0.76 to 2.2 l H2/l medium), whereas waste concentration of 10% v/v resulted in the best substrate yield (0.22 l H2/l of waste). Under these conditions the amount of generated hydrogen was 2.24 l H2/l medium and light conversion efficiency reached value of 1.7%. The modified Gompertz equations served in modeling of the kinetics of the studied process.  相似文献   

4.
Dark fermentative hydrogen production by a hot spring culture was studied from different sugars in batch assays and from xylose in continuous stirred tank reactor (CSTR) with on-line pH control. Batch assays yielded hydrogen in following order: xylose > arabinose > ribose > glucose. The highest hydrogen yield in batch assays was 0.71 mol H2/mol xylose. In CSTR the highest H2 yield and production rate at 45 °C were 1.97 mol H2/mol xylose and 7.3 mmol H2/h/L, respectively, and at 37 °C, 1.18 mol H2/mol xylose and 1.7 mmol H2/h/L, respectively. At 45 °C, microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutulyticum and Citrobacter freundii, whereas at 37 °C six Clostridial species were detected. In summary hydrogen yield by hot spring culture was higher with pentoses than hexoses. The highest H2 production rate and yield and thus, the most efficient hydrogen producing bacteria were obtained at suboptimal temperature of 45 °C for both mesophiles and thermophiles.  相似文献   

5.
The present study aimed to evaluate the hydrogen production of a microbial consortium using different concentrations of sugarcane vinasse (2–12 g COD L−1) at 37 °C and 55 °C. In mesophilic tests, the increase in vinasse concentration did not significantly impact the hydrogen yield (HY) (from 1.72 to 2.23 mmol H2 g−1 CODinfluent) but had a positive effect on the hydrogen production potential (P) and hydrogen production rate (Rm). On the other hand, the increase in the substrate concentration caused a drop in HY from 2.31 to 0.44 mmol H2 g−1 CODinfluent in the tests performed at 55 °C with vinasse concentrations from 2 to 12 g COD L−1. The mesophilic community was composed of different species within the Clostridium genus, and the thermophilic community was dominated by organisms affiliated with the Thermoanaerobacter genus. Not all isolates affiliated with the Clostridium genus contributed to a high HY, as the homoacetogenic pathway can occur.  相似文献   

6.
Photofermentative H2 production at higher rate is desired to make H2 viable as cheap energy carrier. The process is influenced by C/N composition, pH levels, temperature, light intensity etc. In this study, Rhodobacter sphaeroides strain O.U 001 was used in the annular photobioreactor with working volume 1 L, initial pH of 6.7 ± 0.2, inoculum age 36 h, inoculum volume 10% (v/v), 250 rpm stirring and light intensity of 15 ± 1.1 W m−2. The effect of parameters, i.e. variation in concentration of DL malic acid, L glutamic acid and temperature on the H2 production was noted using three factor three level full factorial designs. Surface and contour plots of the regression models revealed optimum H2 production rate of 7.97 mL H2 L−1 h−1 at 32 °C with 2.012 g L−1 DL malic acid and 0.297 g L−1 L glutamic acid, which showed an excellent correlation (99.36%) with experimental H2 production rate of 7.92 mL H2 L−1 h−1.  相似文献   

7.
8.
Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO2-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark–photo fermentation was stably operated for nearly 80 days, giving a maximum H2 yield of 11.61 mol H2/mol sucrose and a H2 production rate of 673.93 ml/h/l. The biogas produced from the sequential dark–photo fermentation (containing ca. 40.0% CO2) was directly fed into a microalga culture (Chlorella vulgaris C–C) cultivated at 30 °C under 60 μmol/m2/s illumination. The CO2 produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C–C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid.  相似文献   

9.
The study of photosynthetic hydrogen production by using Rhodobacter sphaeroides RV from acetate was described. We investigated the effects of light source (fluorescent, halogen and tungsten lamps), light intensity (1200–6000 lux), inoculum quantity (OD660 0.212–OD660 1.082) and initial pH (4.0–10.0) on biohydrogen production. The results indicated that the hydrogen production for halogen and tungsten lamps was better than it for fluorescent lamp as light source. The best light intensity of hydrogen production was 3600 lux for tungsten lamp as light source. Inoculum quantity experiments indicated that the higher hydrogen production volume and hydrogen conversion rate were obtained at initial OD660 of 0.931. The effect of initial pH on hydrogen production indicated that the maximum hydrogen yield reached to 653.2 mmol H2/mol acetate at initial pH 7.0.  相似文献   

10.
This paper reports investigations carried out to determine the optimum culture conditions for the production of hydrogen with a recently isolated strain Clostridium butyricum CWBI1009. The production rates and yields were investigated at 30 °C in a 2.3 L bioreactor operated in batch and sequenced-batch mode using glucose and starch as substrates. In order to study the precise effect of a stable pH on hydrogen production, and the metabolite pathway involved, cultures were conducted with pH controlled at different levels ranging from 4.7 to 7.3 (maximum range of 0.15 pH unit around the pH level). For glucose the maximum yield (1.7 mol H2 mol−1 glucose) was measured when the pH was maintained at 5.2. The acetate and butyrate yields were 0.35 mol acetate mol−1 glucose and 0.6 mol butyrate mol−1 glucose. For starch a maximum yield of 2.0 mol H2 mol−1 hexose, and a maximum production rate of 15 mol H2 mol−1 hexose h−1 were obtained at pH 5.6 when the acetate and butyrate yields were 0.47 mol acetate mol−1 hexose and 0.67 mol butyrate mol−1 hexose.  相似文献   

11.
A hydrogen producing facultative anaerobic alkaline tolerant novel bacterial strain was isolated from crude oil contaminated soil and identified as Enterobacter cloacae DT-1 based on 16S rRNA gene sequence analysis. DT-1 strain could utilize various carbon sources; glycerol, CMCellulose, glucose and xylose, which demonstrates that DT-1 has potential for hydrogen generation from renewable wastes. Batch fermentative studies were carried out for optimization of pH and Fe2+ concentration. DT-1 could generate hydrogen at wide range of pH (5–10) at 37 °C. Optimum pH was; 8, at which maximum hydrogen was obtained from glucose (32 mmol/L), when used as substrate in BSH medium containing 5 mg/L Fe2+ ion. Decrease in hydrogen partial pressure by lowering the total pressure in the fermenter head space, enhanced the hydrogen production performance of DT-1 from 32 mmol H2/L to 42 mmol H2/L from glucose and from 19 mmol H2/L to 33 mmol H2/L from xylose. Hydrogen yield efficiency (HY) of DT-1 from glucose and xylose was 1.4 mol H2/mol glucose and 2.2 mol H2/mol xylose, respectively. Scale up of batch fermentative hydrogen production in proto scale (20 L working volume) at regulated pH, enhanced the HY efficiency of DT-1 from 2.2 to 2.8 mol H2/mol xylose (1.27 fold increase in HY from laboratory scale). 84% of maximum theoretical possible HY efficiency from xylose was achieved by DT-1. Acetate and ethanol were the major metabolites generated during hydrogen production.  相似文献   

12.
A thermotolerant fermentative hydrogen-producing strain was isolated from crude glycerol contaminated soil and identified as Klebsiella pneumoniae on the basis of the 16S rRNA gene analysis as well as physiological and biochemical characteristics. The selected strain, designated as K. pneumoniae TR17, gave good hydrogen production from crude glycerol. Culture conditions influencing the hydrogen production were investigated. The strain produced hydrogen within a wide range of temperature (30–50 °C), initial pH (4.0–9.0) and crude glycerol concentration (20–100 g/L) with yeast extract as a favorable nitrogen source. In batch cultivation, the optimal conditions for hydrogen production were: cultivation temperature at 40 °C, initial pH at 8.0, 20 g/L crude glycerol and 2 g/L yeast extract. This resulted in the maximum cumulative hydrogen production of 27.7 mmol H2/L and hydrogen yield of 0.25 mol H2/mol glycerol. In addition, the main soluble metabolites were 1,3-propanediol, 2,3-butanediol and ethanol corresponding to the production of 3.52, 2.06 and 3.95 g/L, respectively.  相似文献   

13.
14.
Biohydrogen production process from glucose using extreme-thermophilic H2-producing bacteria enriched from digested sewage sludge was investigated for five cycles of repeated batch experiment at 70 °C. Heat shock pretreatment was used for preparation of hydrogen-producing bacteria comparing to an untreated anaerobic digested sludge for their hydrogen production performance and responsible microbial community structures. The results showed that the heat shock pretreatment completely repressed methanogenic activity and gave the maximum hydrogen production yield of 355-488 ml H2/g COD in the second cycle of repeated batch cultivation with more stable gas production during the cultivation when compared with control. Hydrogen production was accompanied by production of acetic acid. The average specific hydrogen in five cycles experiment ranged from 150 to 200 ml H2/g VSS. PCR-DGGE profiling showed that the extreme-thermophilic culture predominant species were closely affiliated to Thermoanaerobacter pseudethanolicus.  相似文献   

15.
This study aims to produce hydrogen from sludge of poultry slaughterhouse wastewater treatment plant (5% total solid) by anaerobic batch fermentation with Enterobactor aerogenes or mixed cultures from hot spring sediment as the inoculums. Sludge was heated in microwave at 850 W for 3 min. Results indicated that a soluble chemical oxygen demand (sCOD) of pretreated sludge was higher than that of raw sludge. Pretreated sludge inoculated with E. aerogenes and supplemented with the Endo nutrient had a higher hydrogen yield (12.77 mL H2/g tCOD) than the raw sludge (0.18 mL H2/g tCOD). When considered the hydrogen yield, the optimum initial pH for hydrogen production from microwave pretreated sludge was 5.5 giving the maximum value of 12.77 mL H2/g tCOD. However, when considered the hydrogen production rate (Rm), the optimum pH for hydrogen production would be 9.0 with the maximum Rm of 22.80 mL H2/L sludge·h.  相似文献   

16.
In this study we have demonstrated the possibility of phototrophic hydrogen production in C. reinhardtii under N-deprived conditions. When tested under air + CO2, and Ar + CO2 N-deprived C. reinhardtii demonstrated decrease in PSII activity mainly due to over reduction of PQ, in addition no ascorbate accumulation was observed in cells. Under air + CO2 atmosphere cells accumulated excessive amounts of starch. When incubated under Ar + CO2 atmosphere cells accumulated starch as nitrogen replete cultures and no hydrogen production was observed. Hydrogen production (86 ml H2 per one l of culture) occurred under Ar + CO2 atmosphere when particular two-step illumination protocol was implicated. In oxygen producing and early oxygen consuming stage cells were illuminated under light intensity 169 μE m?2 s?1. When light was switched to 30 μE m?2 s?1, cultures quickly respired all oxygen and transient to anaerobic conditions with subsequent hydrogen production 2 h later. Actual quantum yield of C. reinhardtii cultures was measured in photobioreactor and maximal quantum efficiency of PSII of dark adapted cells together with JIP test were studied.  相似文献   

17.
Photo-biohydrogen by microalgae is attractive sustainable energy caused by the utilization of solar energy and water. However, due to oxygen (O2) sensitive hydrogenase (HydA) activity, effective control of O2 and light intensity is critical for achieving sustainable photosynthetic hydrogen (H2) production. Here we demonstrate continuous algal H2 production using acetate-enriched fermenter effluent, achieving the complete O2 cessation without sulfur depletion. Average H2 production of 108 ± 4 μmol L?1 for Chlamydomonas reinhardtii and 88 ± 7 μmol L?1 for Chlorella sorokiniana at 100 μmol m?2 s?1 were observed for 15 days, respectively. The highest light energy to H2 energy conversion efficiency (LHCE) of 1.61% for C. reinhardtii and 1.06% for C. Sorokiniana was obtained under low light intensity (50 μmol m?2 s?1) but the LHCE decreased with the increase of light intensity followed by photoinhibition, which led to a decrease of HydA activity and H2 production. Low H2 production was observed at 50 μmol m?2 s?1 under the highest LHCE, in which microalgae exhibited photoinhibition biomass growth kinetics to produce chlorophyll a (Chl a) for electron generation. These results demonstrate that light is a feasible strategy for producing electron for H2 production under anoxygenic photosynthesis.  相似文献   

18.
Glycerol is an inevitable by-product from biodiesel synthesis process and could be a promising feedstock for fermentative hydrogen production. In this study, the feasibility of using crude glycerol from biodiesel industry for biohydrogen production was evaluated using seven isolated hydrogen-producing bacterial strains (Clostridium butyricum, Clostridium pasteurianum, and Klebsiella sp.). Among the strains examined, C. pasteurianum CH4 exhibited the best biohydrogen-producing performance under the optimal conditions of: temperature, 35 °C; initial pH, 7.0; agitation rate, 200 rpm; glycerol concentration, 10 g/l. When using pure glycerol as carbon source for continuous hydrogen fermentation, the average H2 production rate and H2 yield were 103.1 ± 8.1 ml/h/l and 0.50 ± 0.02 mol H2/mol glycerol, respectively. In contrast, when using crude glycerol as the carbon source, the H2 production rate and H2 yield was improved to 166.0 ± 8.7 ml/h/l and 0.77 ± 0.05 mol H2/mol glycerol, respectively. This work demonstrated the high potential of using biodiesel by-product, glycerol, for cost-effective biohydrogen production.  相似文献   

19.
In this work, a carbohydrate-rich microalga, Chlorella vulgaris ESP6, was grown photoautotrophically to fix the CO2. The resulting microalgal biomass was hydrolyzed by acid or alkaline/enzymatic treatment and was then used for biohydrogen production with Clostridium butyricum CGS5. The C. vulgaris biomass could be effectively hydrolyzed by acid pretreatment while similar hydrolysis efficiency was achieved by combination of alkaline pretreatment and enzymatic hydrolysis. The biomass of C. vulgaris ESP6 containing a carbohydrate content of 57% (dry weight basis) was efficiently hydrolyzed by acid treatment with 1.5% HCl, giving a reducing sugars (RS) yield of nearly 100%. C. butyricum CGS5 could utilize RS from C. vulgaris ESP6 biomass to produce hydrogen without any additional organic carbon sources. The optimal conditions for hydrogen production were 37 °C and a microalgal hydrolysate loading of 9 g RS/L with pH-controlled at 5.5. Under the optimal conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1476 ml/L, 246 ml/L/h, and 1.15 mol/mol RS, respectively. The results demonstrate that the C. vulgaris biomass has the potential to serve as effective feedstock for dark fermentative H2 production.  相似文献   

20.
Cellobiose fermentation in batch test using an isolated strain, Clostridium sp. R1, was investigated. The Clostridium sp. R1 achieved a maximum hydrogen yield of 3.5 mol H2 mol−1 cellobiose at pH 6 and 30 °C, higher than most yields reported in literature. This strain can generate hydrogen from a number of carbohydrates, including galactose, glucose, mannose, maltose, sucrose, and starch. This strain can also convert cellobiose to hydrogen in the presence of toxic phenol or cresol. The inhibition effects of phenolic compounds on strain R1 activity followed phenol > p-cresol > o-cresol > m-cresol. Co-culturing with another strain, Clostridium butyricum, can co-degrade some of the phenol as substrates. The new isolated strain can yield hydrogen from phenol-containing wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号