首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A systematic method for modeling direct methanol fuel cells, with a focus on the anode side of the system, is advanced for the purpose of quantifying the methanol crossover phenomenon and predicting the concentration of methanol in the anode catalyst layer of a direct methanol fuel cell. The model accounts for fundamental mass transfer phenomena at steady state, including convective transport in the anode flow channel, as well as diffusion and electro-osmotic drag transport across the polymer electrolyte membrane. Experimental measurements of methanol crossover current density are used to identify five modeling parameters according to a systematic parameter estimation methodology. A validation study shows that the model matches the experimental data well, and the usefulness of the model is illustrated through the analysis of effects such as the choice fuel flow rate in the anode flow channel and the presence of carbon-dioxide bubbles.  相似文献   

2.
A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.  相似文献   

3.
The simulation results of a one-dimensional (1D) direct methanol fuel cell (DMFC) model are compared with the current density and methanol-crossover data that are experimentally measured under several different cell designs and operating conditions. No fitting parameters are employed for the comparison and model input parameters obtained from the literature are consistently used for all the cases of comparison. The numerical predictions agree well with the experimental data and the 1D DMFC model successfully captures key experimental trends that are observed in the cell current density and methanol-crossover data. This clearly illustrates that the present DMFC model can be applicable for optimizing DMFC component designs and operating conditions. In addition, the model simulations further indicate that the reduction of the methanol concentration in the anode catalyst layer is critical to simultaneously suppress both the electro-osmotic drag (EOD) and the diffusion aspects of methanol crossover.  相似文献   

4.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

5.
A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs.  相似文献   

6.
A kinetic model for the anode of the direct methanol fuel cell (DMFC) is presented. The model is based on the generally accepted dual site mechanism of methanol oxidation, in aqueous solution, on well characterized Pt–Ru catalyst and it can predict the performance of the electrode as a function of cell temperature, anode potential and methanol concentration. In addition the model also generates data regarding the surface coverage of significant adsorbates involved in methanol oxidation on the dual site catalyst.  相似文献   

7.
The electrochemical behaviour of direct methanol fuel cells (DMFCs) is sensitive to methanol concentration; thus, to avoid external sensors, it is a promising candidate to monitor the concentration of methanol in the fuel circulation loop, which is central to the efficient operation of direct methanol fuel cell systems. We address this issue and report on an extremely robust electrochemical methanol sensing technique that is not sensitive to temperature, cell degradation and membrane electrode assembly (MEA) type. We develop a temperature independent empirical correlation of the dynamic response of cell voltage to step changes in current with methanol concentration. This equation is successfully validated under various operating scenarios at both the single cell and stack levels. Our sensing method achieves an impressive accuracy of ±0.1 M and this is expected to increase the reliability of methanol sensing and simplify the control logic of DMFC systems.  相似文献   

8.
Methanol crossover is still a significant barrier to the commercialization of direct methanol fuel cells with wide-used Nafion® membrane. Herein, molecular sieve is introduced into the design of polymer electrolyte membrane to alleviate methanol crossover. The UZM-9 zeolite with an intermediate window size of 0.42 nm can effectively separate hydrated methanol (ca. 1.10 nm) and hydrated proton (ca. 0.23 nm). The methanol diffusion rate through the membrane is effectively suppressed after modified with UZM-9, which is about four times lower than the origin Nafion® membrane. The resulted peak power density reached 80 mW cm−2 with 2 mol L−1 methanol solution feed, which is 2.5-fold higher than that of direct methanol fuel cell with commercial Nafion® membrane. These results open a promising route to alleviate methanol crossover in direct methanol fuel cells.  相似文献   

9.
Adequate control over the concentration of methanol is critically needed in operating direct methanol fuel cell (DMFC) systems, because performance and energy efficiency of the systems are primarily dependent on the concentration of methanol feed. For this purpose, we have built a sensor-less control logic that can operate based on the estimation of the rates of methanol consumption in a DMFC. The rates of methanol consumption are measured in a cell and the resulting data are fed as an input to the control program to calculate the amount of methanol required to maintain the concentration of methanol at a set value under the given operating conditions of a cell. The sensor-less control has been applied to a DMFC system employed with a large-size single cell and the concentration of methanol is found to be controlled stably to target concentrations even though there are some deviations from the target values.  相似文献   

10.
Composite membranes consisting of polyvinylidene fluoride (PVdF) and Nafion have been prepared by impregnating various amounts of Nafion (0.3–0.5 g) into the pores of electrospun PVdF (5 cm × 5 cm) and characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and proton conductivity measurements. The characterization data suggest that the unique three-dimensional network structure of the electrospun PVdF membrane with fully interconnected fibers is maintained in the composite membranes, offering adequate mechanical properties. Although the composite membranes exhibit lower proton conductivity than Nafion 115, the composite membrane with 0.4 g Nafion exhibits better performance than Nafion 115 in direct methanol fuel cell (DMFC) due to smaller thickness and suppressed methanol crossover from the anode to the cathode through the membrane. With the composite membranes, the cell performance increases on going from 0.3 to 0.4 g Nafion and then decreases on going to 0.5 g Nafion due to the changes in proton conductivity.  相似文献   

11.
PtRu/CNTs and PtRuMo/CNTs catalysts have been synthesized by microwave-assisted polyol process and used as the anode catalysts for a direct methanol fuel cell (DMFC). The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The effect of different anode catalysts, membrane electrode assembly (MEA) activation, methanol concentration, methanol flow rate, oxygen flow rate and cell temperature on the DMFC performance has been investigated. The results show that the PtRu or PtRuMo particles with face-centered cubic structure are uniformly distributed on CNTs, and the addition of Mo to PtRu/CNTs makes the binding energies of each Pt species shift to lower values. PtRuMo/CNTs is a promising anode catalyst for DMFCs, and the appropriate operating conditions of the DMFC with PtRuMo/CNTs as the anode catalyst are MEA activation for 10 h, 2.0–2.5 M methanol at the flow rate of 1.0–2.0 mL/min, and oxygen at the flow rate of 100–150 mL/min. The DMFC performance increases significantly with an increase in cell temperature.  相似文献   

12.
We electrodeposited noble metal (palladium, platinum) nanowires into the hydrophilic pores of Nafion membrane for mitigating the problem of methanol crossover in direct methanol fuel cells (DMFCs). The DMFC performance result shows that the composite membranes yield lower rate of methanol crossover and better cell performance than the pure Nafion® membrane. At low current densities, the Pd nanowire incorporated Nafion membrane shows the best performance. In comparison, the highest performance is achieved at higher current densities with the Pt nanowire modified Nafion membrane. Based on the above findings, we suggest that for the Pd nanowire incorporated Nafion membrane, the mechanism for the suppression of the methanol crossover is mainly the blocking effect due to the ‘narrowed’ hydrophilic channels in Nafion membrane. For the Pt nanowire modified Nafion membrane, the mechanism includes both increasing the membrane tortuosity and so-called ‘on-way consumption’ of methanol on the Pt nanowires deposited into the Nafion membrane when the fuel cell is discharging.  相似文献   

13.
This paper was presented to determine the methanol crossover and efficiency of a direct methanol fuel cell (DMFC) under various operating conditions such as cell temperature, methanol concentration, methanol flow rate, cathode flow rate, and cathode backpressure. The methanol crossover measurements were performed by measuring crossover current density at an open circuit using humidified nitrogen instead of air at the cathode and applied voltage with a power supply. The membrane electrode assembly (MEA) with an active area of 5 cm2 was composed of a Nafion 117 membrane, a Pt–Ru (4 mg/cm2) anode catalyst, and a Pt (4 mg/cm2) cathode catalyst. It was shown that methanol crossover increased by increasing cell temperature, methanol concentration, methanol flow rate, cathode flow rate and decreasing cathode backpressure. Also, it was revealed that the efficiency of the DMFC was closely related with methanol crossover, and significantly improved as the cell temperature and cathode backpressure increased and methanol concentration decreased.  相似文献   

14.
This paper reports on a chromatography-based method for determining the water concentration in the anode catalyst layer (CL) of a direct methanol fuel cell (DMFC). By this method, the effect of the water concentration in the anode CL on the product distribution of the methanol oxidation reaction (MOR), the anode potential, and the cell internal resistance is experimentally investigated in a DMFC operating with neat methanol. Interestingly, it is found that the main product of the anode MOR is still carbon dioxide even when the water concentration in the anode CL is extremely low. The experimental data also show that an increase in the water concentration in the anode CL decreases the internal resistance, the production of by-products (methyl formate and methylal), and the anode potential. As the mole ratio of water to methanol increases beyond a critical value, however, both the internal resistance and the anode potential tend to be stabilized at the points under diluted methanol operating conditions.  相似文献   

15.
An exergetic analysis model for direct methanol fuel cell (DMFC) is established in the present paper. Expressions of electrical, thermal and total exergetic efficiencies have been deduced with consideration of methanol crossover and over potential in operation. Furthermore, energy utilization of a DMFC system is quantitatively calculated and changes of electrical efficiency and thermal efficiency at various current density, methanol concentration, operating temperature, and cathode pressure have been investigated. Some suggestions of optimal operating conditions of direct methanol fuel cell based on our findings are put forward. Results show that the thermal energy generated in a DMFC takes up a significant amount of exergy in total energy and should be sufficiently used to obtain high total efficiency in a DMFC, high methanol crossover rate is the predominant cause of energy loss when the fuel cell operates at low current density, and total exergetic efficiency of a DMFC reaches its peak value at relatively high current density.  相似文献   

16.
AuNi nanoparticles supported on the activated carbon (AuNi/C) are synthesized by the impregnation method in the ethyleneglycol system using NH2NH2·H2O as a reducing agent. The alloying of Au and Ni and the removal of unalloyed Ni in the AuNi/C composition are achieved by heat and acid treatments in sequence. Research results reveal that the average size and alloying degree of the AuNi nanoparticles in the AuNi/C catalyst increase with the enhancement of the annealing temperature. However, the Ni content of the AuNi/C catalyst firstly goes up and then down with the rising of heat treatment temperature due to the AuNi system phase-separates. Moreover, the electrocatalytic activity normalized by the electrochemically active surface area of each AuNi/C catalyst is far better than that of the Au/C catalyst, because of the bifunctional mechanism and the electrocatalytic activity of the NiOOH. In particular, the AuNi/C catalyst annealed at 400 °C exhibits the most excellent activity, due to its small AuNi particles and proper alloying degree. Furthermore, its mass-specific electrochemical activity is higher than that of the Au/C catalyst, although the mean diameter of the AuNi nanoparticles in this catalyst is larger than that of the Au nanoparticles.  相似文献   

17.
For the past decade, extensive mathematical modelling has been conducted on the design and optimization of liquid-feed direct methanol fuel cells (DMFCs). Detailed modelling of DMFC operations reveals that a two-phase flow phenomenon at the anode and under-rib convection due to the pressure difference between the adjacent channels both contribute significantly to mass-transfer in a DMFC and its output performance. In practice, comprehensive simulations based on the finite volume technique for two-phase flow require a high level of numerical complexity in computation. This study presents a complexity-reduced mathematical model that is developed to cover both phenomena for a realistic, but fast, in computation for the prediction and analysis of a DMFC prototype design. The simulation results are validated against experimental data with good agreement. Analysis of the DMFC mass-transfer is made to investigate methanol distribution at anode and its crossover through the proton-exchange membrane. From a comparison of the influence of two-phase flow and under-rib mass-transfer on DMFC performance, the significance of gas-phase methanol transport is established. Simulation results suggest that both the optimization of the flow-field structure and the fuel cell operating parameters (flow rate, methanol concentration and operating temperature) are important factors for competitive DMFC performance output.  相似文献   

18.
Various silica particles were adopted as catalyst supports, and silica-supported PtRu catalysts were evaluated as catalysts for the anode of direct methanol fuel cells at methanol concentrations of 1–10 M through single cell tests. Compared to a carbon black supported Pt–Ru catalysts, the silica-supported Pt–Ru catalysts exhibited higher performance in MEA, especially with high concentration over 3 M, and the maximum power density reached to 90 mW cm−2 and 60 mW cm−2 with 5 M and 10 M, respectively, which were 1.5 and 3 times higher than the reference carbon black supported catalysts. It was found that the silica particles as a catalyst support have a significant effect on reduction of methanol crossover and control of fuel feeding. Such a high performance in the operation with high concentrations was confirmed in the long-term durability test.  相似文献   

19.
Novel anode gas diffusion layers (AGDLs) with both hydrophobic and hydrophilic pathways are created to enhance transfer of both methanol and CO2. Such AGDLs are created by perforating PTFE-treated AGDLs with laser, so that the original pores/pathways in the AGDL are hydrophobic and the laser perforations are hydrophilic, thus providing easy transport paths for both the liquid methanol solution and CO2. One of the novel AGDLs has increased the cell performance by 32% over the non-perforated AGDL. Results of electrochemical impedance spectroscopy (EIS) show that the main reason for the performance enhancement is due to the reduction in mass transfer resistance. Additionally, there is a reduction in charge transfer resistances due to the enhanced methanol transfer to the catalyst layer. The results of linear sweep voltammetry (LSV) show that the perforations increase methanol crossover, thus if perforation density of the AGDL is too high, the cell performances are lower than that of the virgin AGDL.  相似文献   

20.
Improving cell performance is the most demanded task in direct methanol fuel cell (DMFC) research, although this fuel cell has several intrinsic features like high energy density, moderate operating temperature and environmentally friendly operation. The catalyst layer (CL) is the site of electrochemical reactions directly affecting the cell performance. Accordingly, the structure and preparation of the CL are crucial in optimizing performance. In this study, a novel gradient catalyst layer (G-CL) for the anode of DMFC is developed and better performance is obtained compared with that of single catalyst layer (S-CL) anode. A G-CL anode is composed of an outer CL of covalent organic framework (COF) materials-mixed catalyst near the microporous layer (MPL) and a conventional inner CL near the membrane side. Different loading of Pt catalyst in the two layers. Therefore, in the G-CL structure, there existed a catalyst concentration gradient and porosity gradient. Anode electrodes are characterized morphologically and electrochemically and the performance of individual cells containing such G-CL designs is measured. The results indicate that incorporation of the appropriate amount of COF materials enables the outer CL not only to have a larger electrochemical surface area (ECSA) and expose more catalytic active sites but also holds a strong proton transfer ability to improve the methanol oxidation reaction (MOR) performance. Due to the presence of the inner layer of the CL formed the methanol gradient oxidation process. With the same platinum-ruthenium (Pt–Ru) catalyst loading, the 5 wt.% COF G-CL anode structure exhibited lower methanol crossover and higher power density (nearly 11% increment) compared with that of the S-CL anode with high methanol concentration (8 M) at 60 °C, showing the promising potential in further applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号