首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several automakers have expressed their intention to start commercializing hydrogen vehicles on a larger scale by 2015. This commercialization requires efficient roll-out of hydrogen fueling stations, with prior identification of the areas most suitable for their establishment. Suitability of the different areas will be determined by several supply and demand and environmental criteria. In this article, in the case of Spain, we apply a methodology based on Data Envelopment Analysis to select the appropriate municipalities for the establishment of hydrogen fueling stations in the early stages of the deployment process. This methodology has the advantage of reducing subjectivity in the criteria aggregation process for the selection of municipalities.  相似文献   

2.
Shanghai is one of the fastest growing regions of hydrogen energy in China. This paper researched feasible hydrogen sources in both internal and external Shanghai. This study comes up 9 hydrogen production methods and 6 transportation routes, ultimately forms 12 hydrogen supply solutions according to local conditions. The total cost in each solution is estimated including processes of hydrogen production, treatments, storage and transportation based on different transport distance. The results indicate that hydrogen supply cost is above 50 CNY/kgH2 for external hydrogen sources after long-distance transportation to Shanghai, such as hydrogen production from coal in Inner Mongolia and from renewables in Hebei. The total cost of on-site hydrogen production from natural gas can be controlled under 40 CNY/kgH2. When the price of wind power reduces to 0.5 CNY/kWh, hydrogen production from offshore wind power cooperating with hydrogen pipeline network has the greatest development potential for Shanghai hydrogen supply.  相似文献   

3.
Although many studies have looked at safety issues relating to hydrogen fueling stations, few studies have analyzed the security risks, such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fueling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios, including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation, we recommend countermeasures to prevent and mitigate deliberate attacks.  相似文献   

4.
The Brazilian Fuel Cell Bus Project is being developed by a consortium comprising 14 national and international partners. The project was initially supported by the GEF/UNDP and MME/FINEP Brazil. The national coordination is under responsibility of MME and EMTU/SP, the São Paulo Metropolitan Urban Transport Company that also controls the bus operation and bus routes. This work reports the efforts done in order to obtain the necessary licenses to operate the first fuel cell buses for regular service in Brazil, as well as the first commercial hydrogen fueling station to attend the vehicles.  相似文献   

5.
Hydrogen has been used as chemicals and fuels in industries for last decades. Recently, it has become attractive as one of promising green energy candidates in the era of facing with two critical energy issues such as accelerating deterioration of global environment (e.g. carbon dioxide emissions) as well as concerns on the depletion of limited fossil sources. A number of hydrogen fueling stations are under construction to fuel hydrogen-driven vehicles. It would be indispensable to ensure the safety of hydrogen station equipment and operating procedure in order to prevent any leak and explosions of hydrogen: safe design of facilities at hydrogen fueling stations e.g. pressurized hydrogen leak from storage tanks. Several researches have centered on the behaviors of hydrogen ejecting out of a set of holes of pressurized storage tanks or pipes. This work focuses on the 3D simulation of hydrogen leak scenario cases at a hydrogen fueling station, given conditions of a set of pressures, 100, 200, 300, 400 bar and a set of hydrogen ejecting hole sizes, 0.5, 0.7, 1.0 mm, using a commercial computational fluid dynamics (CFD) tool, FLACS. The simulation is based on real 3D geometrical configuration of a hydrogen fueling station that is being commercially operated in Korea. The simulation results are validated with hydrogen jet experimental data to examine the diffusion behavior of leak hydrogen jet stream. Finally, a set of marginal safe configurations of fueling facility system are presented, together with an analysis of distribution characteristics of blast pressure, directionality of explosion. This work can contribute to marginal hydrogen safety design for hydrogen fueling stations and a foundation on establishing a safety distance standard required to protect from hydrogen explosion in Korea being in the absence of such an official requirement.  相似文献   

6.
Lack of hydrogen refueling stations (HRSs) has hindered the diffusion of hydrogen fuel cell vehicles (HFCVs) in the Chinese transport market. By combining the agent-based model (ABM) and the experience weighted attraction (EWA) learning algorithm, this paper explores the impact of government subsidy strategy for HRSs on the market diffusion of HFCVs. The actions of the parties (government, HRS planning department and consumers) and their interactions are taken into account. The new model suggests dynamic subsidy mode based on EWA algorithm yields better results than static subsidy mode: HFCV purchases, HRS construction effort, total number of HRSs and expected HRS planning department profits all outperform static data by around 27%. In addition, choosing an appropriate initial subsidy strategy can increase the sales of HFCVs by nearly 40%. Early investment from government to establish initial HRSs can also increase market diffusion efficiency by more than 76.7%.  相似文献   

7.
When hydrogen fueling stations were constructed first time in Korea in 2006, there were no standards for hydrogen fueling stations. Hence the CNG (Compressed Natural Gas) station codes were temporarily adopted. In last three years, from 2006 to 2009, the studies for the development of hydrogen fueling station standards were carried out, with the support of the Korean government. In this study, three research groups cooperated to develop optimized hydrogen fueling station codes through risk analysis of hydrogen production and filling systems. Its results were integrated to develop the codes. In the first step to develop the codes, the standards for CNG stations and hydrogen fueling station were compared with each other and analyzed. By referring to foreign hydrogen fueling station standards, we investigated the potential problems in developing hydrogen fueling station codes based on the CNG station standards. In the second, the results of the high-pressure hydrogen leakage experiment were analyzed, and a numerical analysis was performed to establish the safety distance from the main facilities of a hydrogen fueling station to the protection facilities. In the third, HAZOP (Hazard and Operability) and FTA (Fault Tree Analysis) safety assessments were carried out for the on-site and off-site hydrogen fueling stations—currently being operated in Korea— to analyze the risks in existing hydrogen fueling stations. Based on the study results of the above three groups, we developed one codes for off-site type hydrogen fueling stations and another codes for on-site type hydrogen fueling stations. These were applied from September 2010.  相似文献   

8.
The hydrogen fueling station is an infrastructure of supplying fuel cell vehicles. It is necessary to guarantee the safety of hydrogen station equipment and operating procedure for decreasing intangible awareness of danger of hydrogen. Among many methods of securing the safety of the hydrogen stations, the virtual experience by dynamic simulation of operating the facilities and equipment is important. Thus, we have developed a virtual reality operator education system, and an interactive hydrogen safety training system. This paper focuses on the development of a virtual reality operator education of the hydrogen fueling station based on simulations of accident scenarios and hypothetical operating experience. The risks to equipment and personnel, associated with the manual operation of hydrogen fueling station demand rigorous personnel instruction. Trainees can practice how to use all necessary equipments and can experience twenty possible accident scenarios. This program also illustrates Emergency Response Plan and Standard Operating Procedure for both emergency and normal operations.  相似文献   

9.
To satisfy the growing refueling demand of hydrogen fuel cell vehicles (HFCVs) with carbon-free hydrogen supply, this paper proposes an integrated planning method of green hydrogen supply chain. First, the k-shorted path method is introduced to analyze HFCV refueling load considering vehicle travel habits and routing diversity. Second, based on it, a two-stage integrated planning model is established to minimize the total investment and operation cost. The construction of hydrogen refueling stations, electrolysis-based hydrogen generation stations and hydrogen pipelines are coordinated with their operating constraints, constituting the green hydrogen supply chain, in which hydrogen storage is also an important part for consideration to address variable renewable power. Then, the proposed model is reformulated as a mixed integer linear programing (MILP) problem solved efficiently. Finally, the case studies are carried out on an urban area in Xi'an China to verify the validity and correctness of the proposed method. The results show that the integrated planning can realize synergy benefits. The influence of electricity prices and k values is also discussed.  相似文献   

10.
South Korea is pushing for advancing the emergence of the hydrogen economy in order to reduce greenhouse gas emissions and promote economic growth. In this regard, a significant expansion of hydrogen charging stations is scheduled, but one of the biggest obstacles to this is the public acceptance of building a hydrogen fueling station near their residences. This article collected the data on the public acceptance toward building a hydrogen fueling station on a nine-point scale from a survey of 1000 people across the country, and analyzed the factors affecting public acceptance employing the ordered probit model. The respondents' approval rate for building a hydrogen fueling station near their residences (48.0%) was slightly higher than twice the opposition rate (23.0%). However, the sum of opposition (23.0%) and neutrality or indifference (29.0%) exceeded half of the total respondents, suggesting that the government's additional efforts were needed to improve acceptance. While some factors positively influenced the public acceptance, others affected it negatively. The various implications that can be obtained from these findings for building hydrogen fueling stations are discussed.  相似文献   

11.
The cost and logistics of building early hydrogen refueling infrastructure are key barriers to the commercialization of fuel cell vehicles. In this paper, we explore a “cluster strategy” for introducing hydrogen vehicles and refueling infrastructure in Southern California over the next decade, to satisfy California's Zero Emission Vehicle regulation. Clustering refers to coordinated introduction of hydrogen vehicles and refueling infrastructure in a few focused geographic areas such as smaller cities (e.g. Santa Monica, Irvine) within a larger region (e.g. Los Angeles Basin). We analyze several transition scenarios for introducing hundreds to tens of thousands of vehicles and 8–42 stations, considering:  相似文献   

12.
13.
Last three decades, costumers and manufacturers of automotive sector have been influenced positively by Hydrogen and fuel cells (FCs). The main goal of automakers can be pointed as minimizing the fuel consumption and exhaust emissions while improving the range limits, energy efficiency and latest technology adaptation. Therewithal, electric assisted propulsion systems added to vehicles and are called as electric vehicles (EVs). For that matter, Battery Electric Vehicles (BEVs) and hydrogen Fuel Cell Electric Vehicles (FCEVs) have become the focus of researchers and producers. In this mini foreseen review, overview of the next quarter century vision of FCEVs are expressed and discussed by the helped of previous researches and with future forecast reports. The introduction part is summarized the general approach and future expectations of FCs in detailed. Technical overview is represented for FCs and FCEVs in terms of current state of technology to foreseen expectancy. Infrastructure analysis and future aspects overview part is also discussed for sector's perspective on FCEVs. The near future perspective of the FCEVs, which is seen as the next step in EVs, is discussed in detail in the next quarter century vision. Authors concluded that, between the 2030s-2050s, hydrogen FCEVs will continue their rising demand scale under the circumstances of decreasing expensive technology; enhanced energy optimization; extended range limits and increasing hydrogen refueling stations.  相似文献   

14.
This is the first work to describe the characteristics of public acceptance of hydrogen stations (H2 station) in Japan using risk perception scales. We conducted an online survey asking respondents to rate their acceptance of having an H2 station constructed in the gas station nearest their home. Sixty-six percent of respondents indicated a high rate of acceptance, with males tending to be more accepting than females, irrespective of age. We found the following to be explanatory factors for acceptance: gender, degree, vehicle use, knowledge about hydrogen, risk perception of H2 station, and inherent risk acceptance and avoidance. Binominal regression analysis was used to construct an acceptance model, and the risk perception factor “Dread” was dominant among the effective independent variables. This suggests that alleviating inherent dread or fear by providing precise risk information will lead to better acceptance. Our study contributes to improved risk communication on H2 station construction.  相似文献   

15.
In order to mitigate greenhouse gas emissions and improve energy efficiency, sustainable energy systems such as multi-energy microgrids (MEMGs) with the high penetration of renewable energy resources (RES) and satisfying different energy needs of consumers have received significant attention in recent years. MEMGs, by relying on renewable resources and energy storage systems along with energy conversion systems, play an essential role in sustainability of energy supply. However, renewable energies are uncertain due to the intermittent nature of solar and wind energy sources. Thus, optimal operation of the MEMGs with the consideration of the uncertainties of RES is necessary to achieve sustainability. In this paper, risk constrained scheduling of a MEMG is carried out with the presence of the PV, wind, biomass, electric vehicles (EVs) and hydrogen vehicles (HVs) charging stations, combined heat and power (CHP), boiler, hydrogen electrolyzer (HE), cryptocurrency miners (CMs), electrical, thermal and hydrogen storage systems, responsive demands. From the trading and business model side, the proposed MEMG optimized operation relies on bilateral contracts between producers and consumers and pool electricity markets. A two-stage stochastic programming method is used for considering the uncertainties of electrical, thermal and hydrogen demands, EV and HV charging stations load, CM load, PV and wind power, and the price of electricity purchased from the pool market. The proposed mixed integer linear programming (MILP) model is solved using the CPLEX solver in GAMS which guarantees to achieve a globally optimal solution. The results show that due to the certain prices of bilateral contracts, the possibility of transaction by bilateral contracts decreases the risk metric CVaR by 50.42%. The simulation results demonstrate that risk of high operation costs while considering flexibility sources, such as storages and demand response (DR) programs, is decreased by 5.45% and 4.6%, respectively. As far as operation costs are concerned, results reveal that using renewable resources decreases operation costs by 34.47%. Moreover, the operation cost is reduced by 5.94% and 4.57% in the presence of storage units and DR programs, respectively. In the same way, storages and DR programs decrease cost of purchased electricity by 13.47% and 14.46%, respectively.  相似文献   

16.
This paper examines the deviation of refueling a hydrogen fuel cell vehicle with limited opportunity provided by the 68 proposed stations in California. A refueling trip is inserted to reported travel patterns in early hydrogen adoption community clusters and the best and worst case insertions are analyzed. Based on these results, the 68 refueling stations provide an average of 2.5 and 9.6 min deviation for the best and the worst cases. These numbers are comparable to currently observed gasoline station deviation, and we conclude that these stations provide sufficient accessibility to residents in the target areas.  相似文献   

17.
The ‘Hydrogen Economy’ is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen FCVs in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen FCVs market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.  相似文献   

18.
This paper presented a system design review of fuel cell hybrid vehicle. Fuel supply, hydrogen storage, DC/DC converters, fuel cell system and fuel cell hybrid electric vehicle configurations were also reviewed. We explained the difference of fuel supply requirement between hydrogen vehicle and conventional vehicles. Three different types of hydrogen storage system for fuel supply are briefly introduced: high pressure, liquid storage and metal oxides storage. Considering of the potential risk of explosion, a security hydrogen storage system is designed to restrict gas pressure in the safe range. Due to the poor dynamic performance of fuel cells, DC/DC converters were added in hybrid vehicle system to improve response to the changes of power demand. Requirements that in order to select a suitable DC/DC converter for fuel-cell vehicles design were listed. We also discussed three different configurations of fuel-cell hybrid vehicles: “FC + B”, “FC + C”, and “FC + B + C”, describing both disadvantages and advantages. “FC + B + C” structure has a better performance among three structures because it could provide or absorb peak current during acceleration and emergency braking. Finally, the energy management strategies of fuel cell and were proposed and the automotive energy power requirement of an application example was calculated.  相似文献   

19.
Hydrogen and fuel cell vehicles are often discussed as crucial elements in the decarbonisation of the transport systems. However, in spite of the fact that hydrogen and fuel cell vehicles have a long history, they are still seen only as a long-term mobility option. The major objective of this paper is to analyse key barriers to the increasing use of hydrogen and fuel cell vehicles. A special focus is put on their economic performance, because this will be most crucial for their future deployment. Mobility costs are calculated based on the total cost of ownership, and future developments are analysed based on technological learning. The major conclusion is that to achieve full benefits of hydrogen and fuel cells in the transport sector, it is necessary to provide stabile, long-term policy framework conditions, as well as to harmonize actions across regions to be able to take advantage of economies of scale.  相似文献   

20.
This study develops a hydrogen fueling station (HFS) thermodynamic model that simulates the actual fueling process in which hydrogen is supplied from a high-pressure (HP) storage tank into a fuel cell electric vehicle (FCEV) tank. To make the model as accurate as possible, we use the same components and specifications as in actual HFSs, such as a pressure control valve, a pre-cooling system, and an FCEV tank. After the components and their specifications are set, pressure and temperature profiles are set as the HP tank supply conditions. Based on the pressure and temperature profiles, the model solves for the temperature, pressure, and mass flow rate of hydrogen at each downstream position, including the inside of the vehicle tank. The values predicted by the model are compared with experimental data, and we show that the developed model makes it possible to accurately simulate those values at any position during the fueling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号