首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Extracellular ATP functions as a neurotransmitter and neuromodulator in the adult nervous system, and a signaling molecule in non-neural tissue, acting either via ligand-gated ion channels (P2X) or G-protein-coupled receptors (P2Y). ATP can cause an increase in intracellular Ca2+ (Ca2+i) in embryonic cells and so regulate cell proliferation, migration, and differentiation. We have isolated a Xenopus cDNA encoding a novel P2Y receptor, XlP2Y, which is expressed abundantly in developing embryos. Recombinant XlP2Y responds equally to all five naturally occurring nucleoside triphosphates (ATP, UTP, CTP, GTP, and ITP), which elicit a biphasic Ca2+-dependent Cl- current (ICl,Ca) where the second phase persists for up to 60 min. XlP2Y also causes a continuous release of Ca2+i and a low level persistent activation of ICl,Ca in Xenopus oocytes through the spontaneous efflux of ATP. mRNAs for XlP2Y are expressed transiently in the neural plate and tailbud during Xenopus development, coincident with neurogenesis. This restricted pattern of expression and novel pharmacological features confer unique properties to XlP2Y, which may play a key role in the early development of neural tissue.  相似文献   

4.
N-methyl-D-aspartate (NMDA) glutamate receptors have an established role in the regulation of motor behavior by the basal ganglia. Recent studies have revealed that NMDA receptors are heteromeric assemblies of structurally related subunits from two families: NMDAR1, which is required for channel activity, and NMDAR2A-D, which modulate the properties of the channels. In the rat, the NMDA receptor subunits exhibit anatomically restricted patterns of expression, so that each component of the basal ganglia has a distinct NMDA receptor subunit mRNA phenotype. We have used in vivo intrastriatal injection of synthetic antisense oligodeoxynucleotides (ODNs) to examine the roles of particular NMDA receptor subunits in the regulation of motor behavior in rats. Injection of 15 nmol of a 20-mer ODN targeted to the NMDAR1 subunit induced spontaneous ipsilateral rotation. Smaller doses of NMDAR1 antisense ODN did not lead to spontaneous rotation, but prominent ipsilateral rotation was observed after systemic administration of D-amphetamine. An antisense ODN to NMDAR2A was also effective in eliciting amphetamine-inducible rotation, although the magnitude of the effect was less than that seen with NMDAR1, whereas ODNs targeted to NMDAR2B, NMDAR2C and an NMDAR1 sense strand ODN had no effect on behavior. In situ hybridization demonstrated that injection of the NMDAR1, NMDAR2A or NMDAR2B antisense ODNs produced specific reductions in target mRNA signal intensity in the injected striatum. After NMDAR1 antisense ODN injection, striatal binding of 3H-glutamate target mRNA signal intensity in the injected striatum. After NMDAR1 antisense ODN injection, striatal binding of 3H-glutamate to NMDA sites was not altered, although strychnine-insensitive 3H-glycine binding sites exhibited a small but significant reduction. These observations suggest that NMDA receptor complexes containing NMDAR1 and, to a lesser extent, NMDAR2A subunits play particularly important roles in the regulation of motor behavior by neostriatal neurons.  相似文献   

5.
6.
7.
8.
9.
10.
11.
The SH2/SH3 adapters Nck, Grb2 and Crk promote the assembly of signaling complexes by binding to tyrosine phosphorylated proteins using their SH2 domains and to proline-rich sequences on effector molecules using their SH3 domains. FGF, which activates a receptor tyrosine kinase, induces mesoderm formation in Xenopus embryos through activation of the Ras/Raf/MAPK signaling pathway. We present evidence that dominant-negative mutants of Nck and Grb2, but not Crk1, can inhibit mesoderm-specific gene induction by eFGF in Xenopus animal cap explants. We also show that dominant-negative mutants of Grb2 and Nck can inhibit eFGF-induced Erk1 activation in Xenopus animal caps, and that targeting the first two SH3 domains of Nck to the membrane can activate Erk1 in the absence of eFGF. Furthermore, combinations of the dominant-negative Grb2 mutants with the inhibitory Nck mutant synergistically inhibited Erk1 activation by eFGF in Xenopus animal caps, suggesting that the dominant-negative Nck and Grb2 mutants inhibit Erk1 activation by binding to different proteins. By contrast only Grb2 mutants could inhibit eFGF-induced Erk1 activation in human 293 cells, demonstrating diversity in the specific mechanisms of signaling from FGF to MAP kinases in different cells.  相似文献   

12.
We describe a plasmid, pXen, designed for the optimized expression of proteins fused to glutathione-S-transferase (GST) in Xenopus laevis oocytes and embryos. The Xenopus model system permits the biochemical analysis of signaling pathways and analysis of embryo phenotype in response to manipulation of proto-oncogene expression. pXen is a modified pSP64T vector which contains an SP6 RNA polymerase promoter followed by the translational initiation sequence of Xenopus beta-globin and the glutathione binding domain of GST. The Xenopus 3' beta-globin untranslated region and polyadenylation site immediately follow the multiple cloning site to permit the efficient translation of in vitro transcribed RNA in oocytes and embryos. The utility of pXen is demonstrated by cloning the catalytic domain of the serine/threonine kinase proto-oncogene Raf-1 into this vector and injecting the corresponding in vitro transcribed RNA into oocytes. Catalytically active GST-vRaf fusion protein was expressed in the injected oocytes and induced oocyte maturation. Moreover, the GST-vRaf fusion protein could be readily purified from Xenopus extracts using glutathione Sepharose. We demonstrate that the Raf-1 catalytic domain retains activity when fused with the N-terminal GST moiety and is subject to negative regulation by the cyclic AMP-dependent protein kinase (PKA). The pXen vector will be useful for an in vivo analysis of the physiological role and regulation of a wide variety of signaling molecules when expressed in Xenopus oocytes and embryos.  相似文献   

13.
Human telomerase, the RNA-dependent DNA polymerase that adds TTAGGG repeats to chromosome ends, is selectively expressed in immortalised cells and most tumours, suggesting a potential role for telomerase inhibitors in cancer therapy. Replication-deficient retroviruses were used to determine whether mRNA containing UUAGGG, the complementary sequence to the template region of the hTR telomerase RNA, is sufficient to inhibit telomerase activity. Telomerase activities measured by the telomeric repeat amplification protocol (TRAP) assay in extracts prepared from immortalised mouse fibroblasts, human HeLa cells and human kidney carcinoma cells were inhibited by 75% or greater in 26 of 56 cell clones expressing UUAGGG. Telomerase activity was not inhibited by expression of mRNA containing a transposed sequence, GGGAUU. Telomerase activities in vivo were inferred from changes in cellular morphology, proliferation capacity, growth rate and measurement of the content of telomere DNA. Giant senescent-like cells emerged shortly after cloning mouse PA317 and human HeLa cells expressing UUAGGG. The fraction of giant cells varied from 100% at the fifth population doubling (PD) in one culture to 2-6% at 50 PD in several other cultures. Giant cells were absent in all parental cells and clones expressing GGGAUU. The average cellular content of telomere DNA was independent of telomerase activity over 50 PD. The results indicate that expression of RNA complementary to the template region of hTR is sufficient to inhibit telomerase in vitro and in vivo, but that the effect of inhibition on individual cells is highly variable.  相似文献   

14.
15.
Natural killer (NK) cells may be expanded in vivo with a prolonged course of daily subcutaneous interleukin-2 (IL-2). However, cellular activation requires higher concentrations of IL-2 than are achieved with low-dose therapy. The objective of the current trial was to determine the toxicity and immunological effects of periodic subcutaneous intermediate-dose IL-2 pulses in patients receiving daily low-dose therapy. A group of 19 patients were treated with daily subcutaneous low-dose IL-2 at 1.25 x 10(6) International Units (1.25 MIU) m(-2) day(-1). After 4-6 weeks, patients received escalating 3-day intermediate-dose IL-2 pulses administered as single daily subcutaneous injections, repeated at 2-week intervals. The maximum tolerated pulse dose was 15 MIU m(-2) day(-1), with transient hypotension, fatigue, and nausea/vomiting dose-limiting. Subcutaneous IL-2 resulted in in vivo expansion of CD56+ NK cells (796+/-210%) and CD56bright natural killer (NK) cells (3247+/-1382%). Expanded NK cells coexpressed CD16, and showed lymphokine-activated killer activity and antibody-dependent cellular cytotoxicity in vitro. Intermediate-dose pulsing resulted in serum IL-2 concentrations above 100 pM. Cellular activation was suggested by rapid margination of NK cells following pulsing, coincident with peak IL-2 levels, with return to baseline by 24 h. In.addition, interferon gamma production in response to lipopolysaccharide was augmented. Subcutaneous daily low-dose IL-2 with intermediate-dose pulsing is a well-tolerated outpatient regimen that results in in vivo expansion and potential activation of NK cells, with possible application in the treatment of malignancy and immunodeficiency.  相似文献   

16.
17.
In the '90's a membrane-associated transport protein, discovered in aquatic organisms, was considered to be expressed in response to environmental xenobiotics. Like the multidrug resistance protein found in mammalian tumor cell lines, this protein confers resistance in organisms in polluted areas by binding xenobiotics and transporting them out of the cells in an energy-dependent manner. This study investigates the expression and the activity of a P-glycoprotein (Pgp) involved in a multixenobiotic resistance mechanism (MXRM) during the early developmental stages and in tissues of adult Xenopus laevis.  相似文献   

18.
The gene coding for the 30 kDa lysine rich surface antigen (Ed-Ag) that is present on membrane surfaces of Entamoeba dispar trophozoites has been characterized. A specific monoclonal antibody MAb 318-28 prepared against this antigen reacts with all E. dispar strains tested, but not with any of the antigens of E. histolytica. In order to understand the function of this antigen, we constructed two plasmids, pEdA-9 and pEdA-Rev, in which the antigen-coding sequence was introduced into the pEhAct-Neo shuttle vector in the direct and opposite orientation, respectively. When E. dispar trophozoites were transfected with pEdA-9, only a slight increase was observed in the expression of the antigen. However, when E. dispar trophozoites were transfected with pEdA-Rev, the expression of the native 30 kDa antigen was significantly inhibited. This inhibition was proportional to the level of resistance of the E. dispar culture to the neomycin derivative G418. Cytopathic assays detected only a slight difference between untransfected, pEdA-9 transfected and pEdA-Rev transfected trophozoites.  相似文献   

19.
20.
X-Delta-1, a Xenopus homologue of the Drosophila Delta gene, is expressed in the early embryonic nervous system in scattered cells that appear to be the prospective primary neurons. Ectopic X-Delta-1 activity inhibits production of primary neurons and interference with endogenous X-Delta-1 activity results in overproduction of primary neurons. These results indicate that the X-Delta-1 protein mediates lateral inhibition delivered by prospective neurons to adjacent cells, and that commitment to a neural fate in vertebrates is regulated by Delta-Notch signalling as in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号