首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface of titanium dental implants is highly susceptible to aggressive fluoride ions in the oral environment. Nanotechnology has proven an effective approach to improve the stability and corrosion resistance of titanium by applying a passive film. In this study, we investigated the effects of fluoride on the corrosion behavior of nanostructured(NS) Ti-24 Nb-4 Zr-8 Sn(Ti2448) alloy in acidulated artificial saliva(AAS)at 37 ℃, and then conducted comparisons with its coarse grained(CG) counterpart. Electrochemical techniques, such as potentiodynamic polarization and electrochemical impedance spectroscopy(EIS), as well as surface analysis including X-ray photoelectron spectroscopy(XPS) with argon ion sputtering, and scanning electronic microscopy(SEM) were employed to evaluate the effects of fluoride on sensitivity to pitting and the tolerance of Ti2448 to fluoride in AAS solution. The results demonstrate that corrosion current density increased with F-concentration. In all respects, the NS Ti2448 alloy presented corrosion resistance superior to that of its coarse grained(CG) counterpart at low F-concentrations(0.1%).Furthermore, a high content of F-(1%) was shown to promote the active dissolution of both alloys by increasing the rate of corrosion. Following immersion in the fluoridated AAS solution for 60 days, a tissuefriendly compound, Ca_3(PO_4)_2, was detected on the surface of the NS when F-= 0.01% and Na_2 TiF_6 was identified as the main component in the corrosion products of the CG as well as NS Ti2448 alloys when F-= 1%. High concentrations of F-produced pitting corrosion on the CG alloy, whereas NS Ti2448 alloy presented general corrosion in the form of lamellar separation under the same conditions. These findings demonstrate the superior corrosion resistance of the NS Ti2448 alloy as well as lower pitting sensitivity and higher tolerance to fluoride due mainly to grain refinement.  相似文献   

2.
Abstract

A Cu-1.5Ti (wt-%) alloy was subjected to hot compression tests at temperatures ranging from 750 to 900°C and strain rates from 100 s-1 to 10-3 s-1. Flow softening was found to occur at all temperatures and strain rates studied. Deformation at 750°C and a relatively high strain rate (100 s-1) resulted in grain refinement of the alloy with a grain size of ~25 μm. Room temperature hardness decreased with increasing deformation temperature, i.e. 145 HV10 after deforming at 750°C and 90 HV10 at 900°C. The higher values of hardness observed after deformation at 750°C are attributed to the fine grain size. A maximum value of 0.21 obtained for the strain rate sensitivity index m is not indicative of superplasticity in this alloy. Activation energy Q for the hot deformation process at 1173 K and strain rate 10-3 s-1 was determined to be 76 kJ mol-1.  相似文献   

3.
不同晶粒尺寸钛合金高温压缩力学行为研究   总被引:1,自引:0,他引:1  
为了解不同晶粒尺寸钛合金的高温变形力学行为,对α相平均晶粒尺寸分别为6、12μm和20μm的TC4钛合金进行了高温压缩试验,研究了晶粒尺寸和变形参数对TC4钛合金高温压缩力学行为的影响,建立了不同晶粒尺寸TC4钛合金的高温变形本构方程.研究表明:应变速率为10-4s-1时6μm的细晶钛合金出现超塑现象,应变速率在10-3~10-1s-1范围时,变形初期不同晶粒尺寸钛合金的流动应力符合Hall-Petch关系,由于细晶钛合金流动应力软化速度较快,变形至稳态阶段时细晶钛合金流动应力低于粗晶合金.  相似文献   

4.
研究了Ti600钛合金在700-1000℃范围内的氧化行为.结果表明,Ti600的100 h氧化动力学近似遵循抛物线-直线规律,氧化激活能为224 kJ·mol-1.Ti600试样在700℃氧化100h后其表面形成了致密的氧化皮,而在高于700℃氧化100 h后氧化皮出现多层结构并开始剥落,氧化皮主要由金红石型TiO2...  相似文献   

5.
The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100 ℃ was systematically investigated in the temperature range of 750-900 ℃ under an initial strain rate of 10-4 s-1.A bimodal γ grain-distribution microstructure of TiA1 alloy sheet,with abundant nano-scale or sub-micron γ laths embed-ded inside β matrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m =0.27 at 800 ℃,which is the lowest temperature of superplastic deformation for TiAl alloys attained so far.The maximum elongation reaches ~360% at 900 ℃ with an initial strain rate of 2.0 × 10-4 s-1.To elucidate the softening mechanism of the disordered β phase during superplastic deformation,the changes of phase composi-tion were investigated up to 1000 ℃ using in situ high-temperature X-ray diffraction (XRD) in this study.The results indicate that β phase does not undergo the transformation from an ordered L20 structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of both y and β dynamic recrystallization (DR) after tensile tests as characterized with electron backscatter diffraction (EBSD),the superplastic deformation mecha-nism can be explained by the combination of DR and grain boundary slipping (GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic de-formation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic TiAl alloy.  相似文献   

6.
针对7B04铝合金开展了变形温度为470~530℃,应变速率为0.0003~0.01s~(-1)的高温超塑性拉伸实验,研究了材料的超塑性变形行为和变形机制。结果表明,7B04铝合金的流动应力随着变形温度的升高和应变速率的降低而逐渐减小,伸长率随之增加;在变形温度为530℃,应变速率为0.0003s~(-1)时,7B04铝合金的伸长率达到最大1105%,超塑性能最佳;应变速率敏感性指数m值均大于0.3,且随变形温度的升高而增加;在500~530℃的变形温度范围内,m值大于0.5,表明7B04铝合金超塑性变形以晶界滑动为主要变形机制;变形激活能Q为190kJ/mol,表明7B04铝合金的超塑性变形主要受晶内扩散控制;7B04铝合金超塑性变形中在晶界附近有液相产生,且适量的液相有利于提高材料的超塑性能。  相似文献   

7.
异步轧制AZ31镁合金板材的超塑性工艺及变形机制   总被引:1,自引:0,他引:1  
经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。  相似文献   

8.
A two-stage strain rate deformation method is proposed to enhance the superplasticity in a hot extruded AZ61 alloy. In the stage-one of deformation, a relatively high strain rate was applied in order to obtain fine grains through dynamic recrystallization. The optimum strain rate for DRX at 300℃ was identified as -5×10-3s-1. Stage-two is conducted at relatively low strain rate in order to utilize the fine grains refined by DRX during stage-one to make the grain boundary sliding operate more smoothly, which resulting in enhanced superplastic elongation from 350% to 440%.  相似文献   

9.
Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn   总被引:2,自引:0,他引:2  
Microstructural evolution and superplasticity of a Mg-9Al-1Zn alloy rolled at 673 K were investigated at 573 K and 1.5×10−3 s−1. The grain size of the as-rolled Mg alloy was 39.5 μm. However, the grain size of the specimen deformed to a true strain of 0.6 was 9.1 μm. The grain refinement was attributed to dynamically continuous recrystallization during an initial stage of tensile test. Stabilization of subgrain boundaries by fine particles and stimulation of continuous recrystallization by prior warm-deformation were not needed to attain dynamically continuous recrystallization in the Mg alloy. As a result of the grain refinement, the rolled Mg alloy exhibited superplastic behavior.  相似文献   

10.
Hot compression tests were conducted on a Gleeble-1500 simulator to investigate the hot deformation behavior of BT20 Ti alloy (Ti-6Al-2Zr-1Mo-1V) in the temperature range from 550 to 1000℃ at constant strain rate in the range of 0.01~1 s-1, and then the optimum spinning temperature range was determined. Moreover, tube spinning experiments were executed to verify the reasonability of the optimum temperature range. The results show that the flow stress declines gradually with increasing deformation temperature and decreasing strain rate. In α β phase region the dynamic recrystallization is the main softening mechanism and in β phase region the hot deformation softening is controlled by dynamic recovery. In α βphase region with reducing strain rate dynamic recrystallization is fully developed. The optimum temperature of hot spinning is 850~900℃ and that of warm spinning is 600~650℃.Meanwhile, at the temperature above 600℃ tubular workpieces of BT20 Ti alloy have been spun without surface cracks and microstructure inhomogeneity, which proves that the optimum spinning temperature range obtained through hot compression experiments is reasonable.  相似文献   

11.
The microstructure evolution and its effect on the impact toughness of a new Ni-Fe based alloy GH984 G,used in 700℃ ultra-super critical coal-fired power plant,were investigated during thermal exposure at 650℃-750℃ for up to 10,000 h.The results show that the impact toughness at room tempe rature drops rapidly at the early stage during thermal exposure at 700℃ and then has no significant change even if after exposure for 10,000 h.The significant decline of the impact toughness is attributed to the coarsening of M23C6 carbides at grain boundaries,which weakens the grain boundary strength and leads to the aging-induced grain boundary embrittlement.The M23C6 carbides have almost no change with further thermal exposure and the impact toughness also remains stable.Additionally,the impact toughness rises with the increase of thermal exposure temperature.The size of γ' after thermal exposure at 750℃ for10,000 h is much bigger than that at 650℃ and 700℃ for 10,000 h.There fore,the intragranular strength decreases significantly due to the transformation of the interaction between γ' and dislocation from stro ngly coupled dislocation shearing to Orowan bowing.More plastic deformation occurs within grains after thermal exposure at 750℃ for 10,000 h,which increases the impact toughness.  相似文献   

12.
Abstract

The mechanisms of hot deformation in the β titanium alloy Ti–10V–2Fe–3Al have been characterised in the temperature range 650–850°C and strain rate range 0·001–100 s-1 using constant true strain rate isothermal compression tests. The β transus for this alloy is ~790°C, below which the alloy has a fine grained duplex +β structure. At temperatures lower than the β transus and lower strain rates, the alloy exhibits steady state flow behaviour while at higher strain rates, either continuous flow softening or oscillations are observed at lower or higher temperatures, respectively. The processing maps reveal three different domains. First, in the temperature range 650–750°C and at strain rates lower than 0·01 s-1, the material exhibits fine grained superplasticity marked by abnormal elongation, with a peak at ~700°C. Under conditions within this domain, the stress–strain curves are of the steady state type. The apparent activation energy estimated in the domain of fine grained superplasticity is ~225 kJ mol-1, which suggests that dynamic recovery in the β phase is the mechanism by which the stress concentration at the triple junctions is accommodated. Second, at temperatures higher than 800°C and strain rates lower than ~0.1 s-1, the alloy exhibits large grained superplasticity, with the highest elongation occurring at 850°C and 0.001 s-1; the value of this is about one-half of that recorded at 700°C. The microstructure of the specimen deformed under conditions in this domain shows stable subgrain structures within large β grains. Third, at strain rates higher than 10 s-1 and temperatures lower than 700°C, cracking occurs in the regions of adiabatic shear bands. Also, at strain rates above 3 s-1 and temperatures above 700°C, the material exhibits flow localisation.  相似文献   

13.
Abstract

In this work, several important problems related to the fabrication of ultrafine grained UFG alpha+beta titanium alloys have been investigated, taking Ti-6.5Al-3.3Mo-1.8Zr-0.26Si wt- as the model material. It has been shown that UFG titanium alloys can be produced by deformation at relatively low temperatures or high strain rates. There were different Zenner-Holloman parameter-grain size relationships in the relatively high temperature region 750-920C and the relatively low temperature region 650-750C for the present titanium alloy. During the compression of a martensite microstructure at 890C, both the alpha and beta phases were dynamic recrystallised and the lamellae were broken up by means of grain boundary sliding and phase penetration along the subgrain boundaries. During compression at 650C, alpha phases were dynamically recrystallised, and beta phases precipitated and grew in the matrix of alpha phases. It was suggested that the martensite microstructure should be preferred to other lamellar microstructures for the fabrication of UFG Ti alloys. The UFG Ti alloy demonstrated good superplasticity at relatively high strain rates and low temperatures.  相似文献   

14.
Grain refinement of a superplastic 7475 Al alloy is observed at strain rates of 10-2s-1 or higher. Metallographic observation shows that the average grain size is changed from 14 m to 10 m after 100% elongation. Two-stage strain-rate tests were performed on the 7475 Al alloy to correlate grain refinement with an improvement of superplasticity. The optimum first strain rate and strain in the first stage were determined through tensile superplastic tests. Superplasticity was improved significantly through two-stage strain-rate testing. This is believed to be related to the refinement of the initial grains at high strain rate. The specimen tested at a strain rate of 2.1×10-4s-1 revealed dispersoid-free zones (DFZs) near grain boundaries normal to the stress axis. When a higher strain rate was applied to the specimens with DFZs, no grain refinement was observed. The absence of grain refinement is due to the concentration of plastic deformation in the weak DFZs. © 1998 Kluwer Academic Publishers  相似文献   

15.
Abstract

The superplasticity of an Fe3Al based intermetallic alloy with 3 at.-% chromium has been investigated in the strain rate range 10-5-10-2 s-1 at test temperatures between 700 and 900°C. The composition of the iron aluminide was Fe–28Al–3Cr (at.-%) with additions of titanium and carbon. After thermomechanical processing the material possessed a coarse grained microstructure with an average grain size of 55 ± 10 μm. Strain rate exponents of 0·33≤m≤0.42 were recorded at strain rates of approximately 10-5-10-3 s-1 in the temperature range 750-900°C. Superplastic elongations of 350% and more were achieved. From thermal activation analysis of superplastic flow, an activation energy of 185 ± 10 kJ mol-1 was derived. This value is comparable to activation energies of superplastic flow in Fe3Al(Ti) alloys. However, in unalloyed Fe3Al the activation energy is higher, ~ 263 kJ mol-1. Optical microscopy showed grain refinement to ~ 30 ± 5 μm in size in superplastically strained tensile specimens. Transmission electron microscopy gave evidence of the formation of subgrains of 0·3–0·5 μm in size. Superplasticity in this iron aluminide is mainly attributed to viscous dislocation glide, controlled by solute drag in the transformed B2 lattice at the deformation temperatures. During superplastic deformation, subgrain formation and grain refinement in the gauge length were revealed. From this it is concluded that dynamic recrystallisation makes an important contribution to the deformation mechanism of superplastic flow in this material.  相似文献   

16.
针对3种高Ca/Al比的Mg-Al-Ca合金(Mg-3.7Al-3.8Ca,Mg-4.4Al-4.5Ca和Mg-4.9Al-5.0Ca)的超塑性行为展开研究,研究结果表明,铸态镁合金具有二次相Al2Ca分布于晶界的枝晶结构。经挤压后,合金的晶粒被细化,二次相也被细化为更小的粒子。这些合金在400℃时表现出很高的伸长率,Mg-4.9Al-5.0Ca在400℃时3.6×10-4 s-1应变速率下获得最大伸长率572%。超塑性流变的变形机制为晶格扩散(DL)控制的晶界滑移(GBS)。对于挤压态Mg-4.9Al-5.0Ca合金,大部分高温稳定相Al2Ca粒子尺寸为80nm,对晶粒长大的抑制作用强烈,在晶界滑移时协调变形,因此在3种合金中Mg-4.9Al-5.0Ca具有最好的超塑性。  相似文献   

17.
About 3 mm thick five-element equimolar high-entropy alloy(HEA) FeCoCrNiMn was successfully deposited by solid-state cold spraying(CS).The high-temperature oxidation behavior of the CSed HEA was investigated at 700-900℃.Heat treatment was performed on the CSed HEA before oxidation to heal the incomplete interfaces between the deposited particles.Results show that the microstructure of the CSed HEA is characterized by grain refinement and abundant interparticle incomplete interfaces.Post-spray heat treatment promotes recrystallization and grain growth in the CSed HEA.After oxidation testing,the oxide scales are composed of multi-layers:a Mn2O3(or Mn3O4) outer layer,a Mn-Cr spinel intermediate layer and a Cr2O3 inner layer.The CSed HEA exhibits higher parabolic rate constants and more favorable internal oxidation than the bulk HEAs that have similar compositions in the literature.Such a discrepancy becomes pronounced at higher temperatures.The grain refinement and numerous particle boundaries are responsible for such a distinctive performance of the CSed HEA.  相似文献   

18.
An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg_3Zn_6Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10~(-3)s~(-1) and 523 K-10~(-3)s~(-1),respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.  相似文献   

19.
The mill products like sheet always have one or more severe textures inevitably,and its effect on mechan-ical properties is not a negligible issue.The orientation dependent tensile-creep behavior induced by rolling texture of Ti65 titanium alloy sheet has been systematically investigated at 650℃.There are some anisotropic characteristics between TD and RD of Ti65 sheet.The UTS and TYS of TD are higher than RD at 650℃.Besides,the creep endurance time of TD(172.6-174.5 h)is about three times longer than RD(55.6-65.1 h)at 650℃and 240 MPa.Moreover,the grains are inclined to form Texture Ⅲ(1 2(1)6)[1(2)11]and(01(1)3)[1(2)11]after creep along with TD,but to form Texture I((1)2-(1)0)[10-(1)0]after creep along with RD.Finally,the crack initiation site is different during creep in TD and RD.The reason for anisotropic properties of tensile and creep has been summarized in two aspects:(ⅰ)the change of the SFs(Schmid factors)value between TD and RD;(ⅱ)the difference of creep mechanism between TD(grain boundary sliding)and RD(dislocation slip).Anisotropy of Ti65 sheet should be fully considered to increase structural efficiency in the engineering design and application.  相似文献   

20.
使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α2相与位错的相互作用是α2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号