首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase separation of lamellar vesicles of anionic surfactants in aqueous solutions and its application as a novel liquid coacervate extraction procedure was examined. Solutions of lauric acid sodium salt separate into two phases in the presence of alkaline earth metals and a water miscible cosurfactant. It is proven that the surfactant phase is built of a perplexed network of multilamellar vesicles consisting of densely packed bilayers. Several factors affecting the formation of this new phase as well as its analytical utility in the preconcentration of metallic ions were assessed on the basis of better exploitation of this new nonspecific extraction technique. In essence, although the procedure to arrive at the optimum conditions seems laborious, the delivered method is straightforward, alleviating the requirement for prereaction with a complexing agent and highly reproducible under the optimum experimental conditions. As an analytical demonstration, the method was successfully applied to the determination of Cd(2+) and Zn(2+) in natural waters. Recoveries were higher than 95%, and detection limits as low as 3 microg L(-)(1) were accomplished by preconcentrating only 10 mL of sample volume in the presence of 0.45% (w/v) anionic surfactant.  相似文献   

2.
In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 microg L(-1) using activated carbon modified with DFID; 0.52 and 0.37 microg L(-1) using activated carbon modified with DFTD and 0.46 and 0.31 microg L(-1) using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%).  相似文献   

3.
A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.  相似文献   

4.
Fang GZ  Tan J  Yan XP 《Analytical chemistry》2005,77(6):1734-1739
A new ion-imprinted thiol-functionalized silica gel sorbent was synthesized by a surface imprinting technique in combination with a sol-gel process for selective on-line, solid-phase extraction of Cd(II). The Cd(II)-imprinted thiol-functionalized silica sorbent was characterized by FT-IR, the static adsorption-desorption experiment, and the dynamic adsorption-desorption method. The maximum static adsorption capacity of the ion-imprinted functionalized sorbent was 284 micromol g(-1). The largest selectivity coefficient for Cd(II) in the presence of Pb(II) was over 220. The static uptake capacity and selectivity coefficient of the ion-imprinted functionalized sorbent are higher than those of the nonimprinted sorbent. The breakthrough capacity and dynamic capacity of the imprinted functionalized silica gel sorbent for 4 mg L(-1) of Cd(II) at 5.2 mL min(-1) of sample flow rate were 11.7 and 64.3 micromol g(-1), respectively. No remarkable effect of sample flow rate on the dynamic capacity was observed as the sample flow rate increased from 1.7 to 6.8 mL min(-1). The imprinted functionalized silica gel sorbent offered a fast kinetics for the adsorption and desorption of Cd(II). The prepared ion-imprinted functionalized sorbent was shown to be promising for on-line, solid-phase extraction coupled with flame atomic absorption spectrometry for the determination of trace cadmium in environmental and biological samples. All competitive ions studied did not interfere with the determination of Cd(II). With a sample loading flow rate of 8.8 mL min(-1) for 45-s preconcentration, an enhancement factor of 56, and a detection limit (3sigma) of 0.07 microg L(-1) were achieved at a sampling frequency of 55 h(-1). The precision (RSD) for 11 replicate on-line sorbent extractions of 8 mug L(-1) Cd(II) was 0.9%. The sorbent also offered good linearity (r = 0.9997) for on-line, solid-phase extraction of trace Cd(II).  相似文献   

5.
Equilibrium, thermodynamic and kinetic studies were carried out for the biosorption of Pb(2+), Cd(2+) and Ni(2+) ions from aqueous solution using the grafted copolymerization-modified orange peel (OPAA). Langmuir and Freundlich isotherm models were applied to describe the biosorption of the metal ions onto OPAA. The influences of pH and contact time of solution on the biosorption were studied. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. According to the Langmuir equation, the maximum uptake capacities for Pb(2+), Cd(2+) and Ni(2+) ions were 476.1, 293.3 and 162.6 mg g(-1), respectively. Compared with the unmodified orange peel, the biosorption capacity of the modified biomass increased 4.2-, 4.6- and 16.5-fold for Pb(2+), Cd(2+) and Ni(2+), respectively. The kinetics for Pb(2+), Cd(2+) and Ni(2+) ions biosorption followed the pseudo-second-order kinetics. The free energy changes (ΔG°) for Pb(2+), Cd(2+) and Ni(2+) ions biosorption process were found to be -3.77, -4.99 and -4.22 kJ mol(-1), respectively, which indicates the spontaneous nature of biosorption process. FTIR demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions. Desorption of Pb(2+), Cd(2+) and Ni(2+) ions from the biosorbent was effectively achieved in a 0.05 mol L(-1) HCl solution.  相似文献   

6.
In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu(2+) ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 microL; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 microg L(-1). The relative standard deviation was 7.6% for six repeated determinations (C = 500 microg L(-1)). Furthermore, the limit of detection (S/N=3) and limit of quantification (S/N=10) of the method were obtained as 1.74 and 6 microg L(-1), respectively.  相似文献   

7.
A procedure for the determination of trace amounts of Pb(II), Cu(II), Ni(II), Co(II), Cd(II) and Mn(II) is described, that combines atomic absorption spectrometry-dysprosium hydroxide coprecipitation. The influences of analytical parameters including amount of dysprosium(III), centrifugation time, sample volume, etc. were investigated on the recoveries of analyte ions. The effects of concomitant ions were also examined. The recoveries of the analyte ions were in the range of 95.00-104.00%. The detection limits corresponding to three times the standard deviation of the blank for the analytes were in the range of 14.1-25.3 microg/L. The method was applied to the determination of lead, copper, nickel, cobalt, cadmium and manganese ions in natural waters and table salts good results were obtained (relative standard deviations <10%, recoveries >95%).  相似文献   

8.
In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.  相似文献   

9.
A fast microwave assisted extraction procedure was developed and optimized for their eventual exploitation in the three-stage sequential extraction procedure proposed by modified BCR protocol (the community Bureau of Reference now the European Union "Measurement and Testing Programme"). The effects of the microwave treatment on the extraction of Cd, Cr, Cu, Ni, Pb and Zn from untreated sewage sludge collected from Hyderabad city (Pakistan) were compared with those obtained from sequential BCR extraction procedure. In sequential BCR method, each extraction step takes 16 h, where as with the use of compromised microwave conditions, extraction steps could be completed in about 120 s, for each step, respectively. Extractable Cd, Cr, Pb and Ni obtained by both comparable methodologies were measured by electrothermal atomic absorption spectrometry (ETAAS), while for Cu and Zn flame atomic absorption spectrometry (FAAS) was used. The validations of both extraction techniques were compared by the analysis of certified reference material of soil amended with sewage sludge (BCR 483). The results of the partitioning study of untreated waste water sewage sludge, indicate that more easily mobilized forms (step 1) were predominant for Cd, Ni and Zn (28.3, 28.4 and 43.7%), in contrast, the largest amount of Cd and Pb (66.4 and 72.8%) was associated with the iron/manganese oxide while Cr and Ni (71.2 and 38.7%) in organic matter/sulphide fractions. The overall metal recoveries in steps 1-3 (excluding residual step) were 95.3-104% of those obtained with the sequential BCR protocol. The accuracy of the proposed microwave extraction method (expressed as %R.S.D.) was lower than 10% for all metals.  相似文献   

10.
In this work, polyurethane foam (PUF) loaded with 2-(6'-methyl-2'-benzothiazolylazo)chromotropic acid (Me-BTANC) was packed in a minicolumn and it was used in an on-line preconcentration system for cadmium and lead determination. Optimum hydrodynamic and chemical conditions for metal sorption were investigated. The effects of several foreign substances on the adsorption of cadmium and lead were also reported. The enrichment factor obtained was 37 (Cd and Pb) for 180 s preconcentration time. The proposed procedures allowed the determination of metals with detection limits (3 sigma) of 0.80 and 3.75 microg L(-1) (0.10 and 0.47 microg g(-1) of solid sample) for cadmium and lead, respectively. The precision of the procedures was also calculated: 3.1 (Cd 10 microg L(-1)) and 4.4% (Pb 100 microg L(-1)). The accuracy of the procedure was checked by analysis of the certified reference materials Spinach Leaves and Fish Tissue. Cadmium and lead contents in environmental samples (black tea, spinach leaves, natural and tap water) were determined by applying the proposed procedure.  相似文献   

11.
A new chelating resin was synthesized by functionalization of a polymer support, Amberlite XAD-2 with purpurin through an azo linkage (NN). The products were characterized by scanning electron microscopy, elemental analysis, Fourier transform infrared spectroscopy and thermogravimetric analysis. The optimum conditions for the extraction of Cd(II), Cr(III) and Pb(II) in two matrices; leachate from cement-based material and de-ionized water, were studied by batch and column methods. The determination of the metal ions was carried out by flame atomic absorption spectrometry. The optimum pH for the extraction of all metal ions in both matrices were at 4.0. Their sorption equilibrium was reached within 1h. The sorbed Cd(II) and Pb(II) were eluted by 1% HNO3 within 10 min with the desorption recovery of >90%. The elution of Cr(III) by 3% H2O2 in 0.1 M NaOH was achieved within 30 min with the desorption recovery of >80%. The sorption capacity of Cd(II), Cr(III) and Pb(II) onto the resin was 75.0, 68.2, 82.7 micromol g(-1) resin in DI water and 54.1, 46.5 and 55.7 micromol g(-1) resin in leachate, respectively. The extraction efficiency in the column method can be improved using the recirculation system. This new method gave a good accuracy in batch system with the recovery of 86.5 and 89.9% for Cd(II) and Pb(II) and R.S.D. less than 2.3% (n=14).  相似文献   

12.
This work describes a procedure for the separation-preconcentration of Fe(III), Pb(II) and Cr(III) from some water samples using a column-filled Amberlite XAD-2000 resin. The analyte ions retained on the column were eluted with 0.5 mol L(-1) HNO(3). The analytes in the effluent were determined by atomic absorption spectrometry. Several parameters governing the efficiency of the method were evaluated including pH, resin amount, sample volume, flow rates, eluent type and divers ion effects. The recoveries under the optimum working conditions were found to be as 100+/-1% Fe, 96+/-1% Pb and 93+/-2% Cr. The relative standard deviations and errors were less than 2% and 5%, respectively. The detection limit based on three standard deviations of the blank was found to be 0.32, 0.51 and 0.81 microg L(-1), for Fe, Pb and Cr, respectively. The procedure was applied to the determination of Fe, Cr and Pb in hot spring water and drinking water samples.  相似文献   

13.
A solid phase extraction method was developed for the preconcentration and separation of trace amounts of chromium, manganese, iron, cobalt, copper, cadmium and lead from environmental samples by complexation with alpha-benzoin oxime followed by adsorption onto Diaion SP-850-solid phase extraction column. One molar per liter HNO(3) was used as eluent. The recoveries of analytes at pH 8.0 with 700 mg of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The detection limits by three sigma for analyte ions were 0.65 microg l(-1) for Cr(III), 0.42 microg l(-1) for Mn(II), 0.28 microg l(-1) for Fe(III), 0.73 microg l(-1) for Co(II), 0.30 microg l(-1) for Cu(II), 0.47 microg l(-1) for Cd(II) and 0.50 microg l(-1) for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials. The presented procedure was applied to the determination of analytes in tap, river and sea waters, rice, wheat, canned tomato and coal samples with successfully results (recoveries greater than 95%, R.S.D.'s lower than 8%).  相似文献   

14.
A new and efficient solid phase extraction method is described for the preconcentration of trace heavy metal ions. The method is based on the adsorption of Fe(3+), Cu(2+) and Zn(2+) on 2-phenyl-1H-benzo[d] imidazole (PHBI) loaded on Triton X-100-coated polyvinyl chloride (PVC). The influences of the analytical parameters including pH and sample volume were investigated. Common coexisting ions did not interfere on the separation and determination of analytes under study. The adsorbed analytes were desorbed by using 5 mL of 4 mol L(-1) nitric acid. The preconcentration factor is 90. The detection limits (3 sigma) were in the range of 0.95-1 microg L(-1). The sorbent exhibited excellent stability and its sorption capacity under optimum conditions has been found to be more than 2.7 mg of ions per gram of sorbent. The recoveries of analytes were generally higher than 95%. The relative standard deviations (R.S.D.s) were generally lower than 4%. The method has been successfully applied to some real samples.  相似文献   

15.
The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 degrees C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10(3)g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010mmol/g for Pb(2+), Cd(2+), and Cu(2+), respectively, and it decreased for Pb(2+) and Cd(2+) in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu(2+)>Cd(2+)>Pb(2+). Finally, the preliminary desorption experiments of Cd(2+) conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.  相似文献   

16.
The biosorption behavior of the solid waste Chinese herb Pang Da Hai (seeds of Sterculia lychnophera Hance) was studied as a sorbent for trace lead and cadmium. The solid waste Chinese herb Pang Da Hai has good sorption and desorption properties for Pb and Cd. The sorbed waste Chinese herb Pang Da Hai was both easily eluted with 0.1 mol l(-1) HNO(3) and easily digested with concentrated HNO(3). The extent of adsorption depends on pH, metal concentration, substrate concentration and the presence of interfering ions. The adsorption capacities were found to be 27.1 and 17.5 mg g(-1) for Pb and Cd. The relative standard deviation of the metal uptake experiment was found to be less than 10% for Pb(II) and Cd(II) using 100 microg l(-1) of metal ions and 20 mg substrate. Based on above, an ecofriend and low cost method for Cd and Pb preconcentration and determination with flame atomic absorption spectrophotometry was developed. The method was validated by the analysis of a standard reference material (GBW 08301). The results agree with those quoted by manufactures. It was used for 90-fold preconcentration of Cd and Pb from tap water and river water samples followed by flame atomic absorption spectroscopic (FAAS) determination with satisfactory results.  相似文献   

17.
Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution. The maximum sorption capacity of Cd(2+) and Pb(2+) was found to be 68.92 and 99.05mgg(-1), respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd(2+) and Pb(2+). Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd(2+) and Pb(2+), respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca(2+), Mg(2+), Na(+), K(+)) and proton H(+) from MPW with the corresponding uptake of Cd(2+) and Pb(2+) revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution.  相似文献   

18.
A sensitive spectrophotometric method for the determination of freely dissolved copper concentrations in aqueous samples after preconcentration with hollow fiber membrane extraction has been developed. The method is based on the equilibrium sampling through a selective membrane into an acceptor solution containing 4-(pyridyl-2-azo)resorcinol (PAR), which serves as stripping agent and metal indicator. Negligible extraction of interferences and equilibrium enrichment of copper allowed for selective spectrophotometric determination of the Cu-PAR complex. Some important extraction parameters such as acceptor composition, shaking, equilibrium time, and sample volume were studied. The optimized methodology showed good linearity in the range of 5-100 microg/L, an enrichment factor of 93, good repeatability and reproducibility (RSDs < 6%, n = 6), and a detection limit of 4 microg/L. The cationic metals Ni2+, C(2+, Cd2+, Fe3+, Pb2+, Zn2+, and Mn2+ were shown not to interfere with the measurement of Cu2+. Measurements on samples containing mixtures of various ligands and cations were in good agreement with theoretically calculated concentrations, and the method was also applied to environmental samples. The developed technique requires less labor and less sophisticated equipment than conventional methods typically based on atomic absorption spectrometry or ICP.  相似文献   

19.
A unique approach was developed to improve the precision of quantification of tributyltin (TBT) in sedimentsby solid phase microextraction (SPME) using isotope dilution GC/MS. The precision of the analytical technique was initially evaluated using standard calibration solutions. In selective ion monitoring (SIM) mode, the relative standard deviation (RSD) obtained for TBT based on peak area response was 18% (n = 11). When an internal standard, tripropyltin (TPrT), was used, the RSD decreased to 12%. A significant improvement in the precision using SPME was noted when a 117Sn-enriched TBT spike was employed; the RSD decreased 4-fold to 3%. Detection limits of 0.2 and 20 ng(Sn) L(-1) were achieved with SPME sampling and liquid-liquid extraction, respectively. Six analyses were performed for determination of TBT in PACS-2 sediment Certified Reference Material using both standard additions and isotope dilution procedures. For the latter, a 117Sn-enriched TBT spike was used. A concentration of 0.88 +/- 0.03 microg g(-1) (RSD 3.4%) obtained using standard additions was in good agreement with the certified value of 0.98 +/- 0.13 microg g(-1) as tin. Concentrations found using isotope dilution were 0.895 +/- 0.015 microg g(-1) (RSD 1.73%) as tin and 0.874 +/- 0.014 microg g(-1) (RSD 1.66%) as tin using a liquid-liquid extraction and SPME sampling, respectively. A 2-fold improvement in the precision of TBT concentration measurement using isotope dilution was clearly achieved, demonstrating its superiority in providing more accurate and precise results as compared to the method of standard additions. The isotope dilution technique eliminated the problem of poor reproducibility, which typically plagues SPME.  相似文献   

20.
Crosslinked carboxymethyl konjac glucomannan (CMKGM) with degrees of substitution (DS) 0.265 and 0.550 were prepared through reaction of monochloroacetic acid (MCA), konjac glucomannan (KGM) and epichlorohydrin and used to adsorb Cu(2+), Pb(2+) and Cd(2+) ions from the aqueous solutions. Regardless of the metal ion species, the adsorption capacity rapidly reached equilibrium within 20min and adsorption followed second-order kinetic equation. The effect of pH on adsorption was apparent, the appropriate range was 5-6. The adsorptions of three metal ions are well followed as the Langmuir adsorption isotherm. The maximum adsorption capacity (Q(m)) and Langmuir constant (b) of CMKGM (DS=0.550) for Pb(2+) were 41.7mg/g and 0.305mg/L. These values were higher than those for Cu(2+) and Cd(2+). Among the tested ions, the order of adsorption capacity was Pb(2+)>Cu(2+)>Cd(2+) in mass basis. The regeneration study indicates that CMKGM could be used repeatedly without significantly changing their adsorption capacities and desorption percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号