首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tl2Te–Tl5Te3–Tl9TbTe6 system has been studied using differential thermal analysis, X-ray diffraction, and microhardness measurements. We have mapped out a number of vertical sections, the 680 K isothermal section of its phase diagram, and projections of its polythermal projections of its liquidus and solidus surfaces. The field of solid solutions with the Tl5Te3 structure (δ-phase) has been shown to account for more than 90% of the area of the composition triangle. Tl2Te-based solid solutions (α-phase) exist in a narrow composition region.  相似文献   

2.
Herein, we report the results of the in vitro dissolution tests, which were carried out by immersing the selected glass-ceramic samples in artificial saliva (AS) for various time periods of up to 42 days. In our experiments, the SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics with different crystal morphology and crystal content were used and a comparison is also made with the baseline glass samples (without any crystals). The bioactivity of the samples was probed by measuring the changes in pH, ionic conductivity and ionic concentration of AS following in vitro dissolution experiments. High resistance of the selected glass-ceramic samples against in vitro leaching has been demonstrated by minimal weight loss (<1%) and insignificant density change, even after 6 weeks of dissolution in artificial saliva. While XRD analysis reveals the change in surface texture of the crystalline phase, FT-IR analysis weakly indicated the Ca-P compound formation on the leached surface. The experimental measurements further indicate that the leaching of F(-), Mg(2+) ions from the sample surface commonly causes the change in the surface chemistry. Furthermore, the presence of (Ca, P, O)-rich mineralized deposits on the leached glass-ceramic surface as well as the decrease in Ca(2+) ion concentrations in the leaching solutions (compared to that in the initial AS solution) provide evidences of the moderate bioactive or mild biomineralisation behaviour of investigated glass-ceramics.  相似文献   

3.
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C.  相似文献   

4.
Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO · (52 ? x)SiO2 · 4P2O5  · xFe2O3 · 3Na2O (2 ≤ x ≤ 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050°C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x ≥ 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them.  相似文献   

5.
In this study, coumarin-doped Pr2Se3–Tl2Se (0.00, 0.05, 0.1, 0.3 wt% coumarin) were covered on the front side of a p-Si substrate by drop coating method and thus Al/coumarin doped Pr2Se3–Tl2Se/p-Si diodes were fabricated. The electronic and optoelectronic properties of the prepared diodes were investigated. The highest rectification ratio (RR?=?IF/IR) value was found to be 2.24?×?105 for the diode having 0.05 wt% coumarin doping at dark and ±?5 V. Also, the highest Iphoto/Idark photosensitivity was found to be 1327 for the diode which has 0.1 wt% coumarin doping at 100 mW/cm2 and ??5 V. The photocurrent of the diodes is higher than the dark current and increases by the increase of the light intensity. These results confirm that the fabricated diodes show a strong photovoltaic behavior. The electronic parameters of the diodes, for example ideality factor and barrier height values, were calculated by the use of current–voltage characteristics. The transient measurement proves that the diodes show both photodiode and photocapacitor behaviors. The change on the conductance and capacitance by the frequency is attributed to the existence of interface states. Thus, the obtained results suggest that the prepared diodes might be used as a photosensor in the applications of optoelectronic.  相似文献   

6.
This paper presents results on the kinetics and mechanism of the physicochemical interaction of InAs, InSb, GaAs, and GaSb semiconductor surfaces with (NH4)2Cr2O7–HBr–C4H6O6 etching solutions under reproducible hydrodynamic conditions in the case of laminar etchant flow over a substrate. We have identified regions of polishing and nonpolishing solutions and evaluated the apparent activation energy of the process. The surface morphology of the crystals has been examined by microstructural analysis after chemical etching. The results demonstrate that the presence of C4H6O6 in etchants helps to reduce the overall reaction rate and extend the region of polishing solutions.  相似文献   

7.
The structure, microstructure, field-induced strain, ferroelectric, piezoelectric and dielectric properties of (1 ? x) (Bi0.5Na0.5)0.935Ba0.065TiO3–xSr3CuNb2O9 (BNT-BT6.5–xSCN, with x = 0, 0.003, 0.006, 0.009) ceramics were investigated. X-ray diffraction patterns show that all samples are pure perovskite structure and Sr3CuNb2O9 (SCN) effectively diffused into the 0.935Bi0.5Na0.5TiO3–0.065BaTiO3 (BNT–BT6.5) solid solution which also reflected in the Raman spectra and the energy disperse spectroscopy (EDS) analysis. With the increases of SCN content, the coercive field (E c  = 18.41 kV/cm) decreases greatly, whereas the remnant polarization (P r  = 29.11 μC/cm2) increases a little at x = 0.003 which is showed in the polarization hysteresis (PE) loops, the result indicate that the ferroelectric order would be disrupted. Around critical composition (x = 0.003) at a driving field of 60 kV/cm, a large unipolar strain of 0.29 % with a normalized strain (d 33 *  = 483 pm/V) is obtained at room temperature. The results indicate that BNT-BT6.5-xSCN ceramics with excellent properties are promising to replace lead-based piezoelectric ceramics and can be used in practical applications.  相似文献   

8.
In a recent report, the evaluation of the phase relations in the Bi2O3–TiO2–WO3 ternary system has shown the existence of a new phase with nominal composition close to Bi6Ti5WO22. In the present contribution we attempt to prepare this single phase by using a solid state route. Although XRD analyses also show traces of two minority Aurivillius-type phases in the synthesized materials, the crystal structure of the Bi6Ti5WO22 phase has been determined by Rietveld analyses revealing a complex structure similar to that of Bi3(AlSb2)O11 and PbHoAl3O8 related compounds. The electrical response of this new phase was characterized as well. Three peaks are observed in its dielectric response: two of them positioned around 0 °C and can be assigned to this Bi6Ti5WO22 structure. The third one rises up to 665 °C and confirms the presence of the Aurivillius-type phases.  相似文献   

9.
(10Li2O–20GeO2–30ZnO–(40-x)Bi2O3xFe2O3 where x = 0.0, 3, 6, and 9 mol%) glasses were prepared. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, DC and AC conductivities, and dielectric properties (constant ε′, loss tan δ, AC conductivity, σ ac, over a wide range of frequency and temperature) of these glasses were carried out as a function of iron ion concentration. The analysis of the results indicate that, the density and molar volume decrease with an increasing of iron content indicates structural changes of the glass matrix. The glass transition temperature T g and onset of crystallization temperature T x increase with the variation of concentration of Fe2O3 referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter ΔT decrease with increase Fe2O3 content, indicates an increasing concentration of iron ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BiO3, BiO6, ZnO4, GeO4, and GeO6. The structural changes observed by varying the Fe2O3 content in these glasses and evidenced by FTIR investigation suggest that the iron ions play a network modifier role in these glasses while Bi2O3, GeO2, and ZnO play the role of network formers. The temperature dependence of DC and AC conductivities at different frequencies was analyzed using Mott’s small polaron hopping model and, the high temperature activation energies have been estimated and discussed. The dielectric constant and dielectric loss increased with increase in temperature and Fe2O3 content.  相似文献   

10.
The aim of the present investigation was to study the role of Al2O3 in the Li2O–CaO–P2O5–SiO2 bioactive glass for improving the bioactivity and other physico-mechanical properties of glass. A comparative study on structural and physico-mechanical properties and bioactivity of glasses were reported. The structural properties of glasses were investigated by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy and the bioactivity of the glasses was evaluated by in vitro test in simulated body fluid (SBF). Density, compressive strength, Vickers hardness and ultrasonic wave velocity of glass samples were measured to investigate physical and mechanical properties. Results indicated that partial molar replacement of Li2O by Al2O3 resulted in a significant increase in mechanical properties of glasses. In vitro studies of samples in SBF had shown that the pH of the solution increased after immersion of samples during the initial stage and then after reaching maxima it decreased with the increase in the immersion time. In vitro test in SBF indicated that the addition of Al2O3 up to 1.5 mol% resulted in an increase in bioactivity where as further addition of Al2O3 caused a decrease in bioactivity of the samples. The biocompatibility of these bioactive glass samples was studied using human osteoblast (MG-63) cell lines. The results obtained suggested that Li2O–CaO–Al2O3–P2O5–SiO2-based bioactive glasses containing alumina would be potential materials for biomedical applications.  相似文献   

11.
A NiV2O6–25 wt % V2O5 molten-oxide material has been prepared and characterized, and its transport properties (electrical conductivity, oxygen ion transport number, and oxygen permeability) have been studied in the temperature range 680–700°C. The results demonstrate that the molten-oxide membrane material obtained possesses high selective oxygen permeability (KO2 = (2.5–5.6) × 10–10 mol/(cm s) in the range 680–740°C and \(\frac{{{j_{{O_2}}}}}{{{j_{{N_2}}}}}\) ~ 1500) and can be used in separators for the preparation of extrapure oxygen from air.  相似文献   

12.
Catalytic combustion of methane was investigated on Pt and PdO-supported CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared by a wet impregnation method in the presence of polyvinylpyrrolidone. The catalysts were characterized by X-ray fluorescence analysis, X-ray powder diffraction, X-ray photoelectron spectra, transmission electron microscopy, and BET specific surface area measurements. The Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 and PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were selective for the total oxidation of methane into carbon dioxide and steam, and no by-products such as HCHO, CO, and H2 were obtained. The catalytic activities of the PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were relatively higher than those of the Pt-supported catalysts, due to the facile re-oxidation of metallic Pd into PdO based on lattice oxygen supplied from the CeO2–ZrO2–Bi2O3 bulk. A decrease in the calcination temperature during the preparation process was found to be effective in enhancing the specific surface area of the catalysts, whereby particle agglomeration was inhibited. Optimization of the PdO amount and calcination temperature enabled complete oxidation of methane at temperatures as low as 320 °C on the 11.6 wt% PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalyst prepared at 400 °C.  相似文献   

13.
Lead-free piezoelectric ceramics (1 − x)Bi0.5Na0.5TiO3xBaNb2O6 (BNT–BN100x), a new member of the BNT-based group, was prepared by conventional solid state reaction. X-ray diffraction showed that BaNb2O6 (BN) diffused into the lattice of Bi0.5Na0.5TiO3 to form a solid solution with perovskite-type structure. The temperature dependence of dielectric constant εr revealed that the solid solution underwent two phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. Both the transition temperature T d and T m were shifted to lower with the increasing content of BaNb2O6. The temperature dependence of dielectric constant at different frequency revealed that the solid solution exhibited obviously dielectric relaxation characteristics. The sample with x = 0.6 mol% exhibited excellent electrical properties, piezoelectric constant d 33 = 94 pC/N; electromechanical coupling factor k p = 0.185. The results showed that BNT–BN100x ceramics were good candidates for use as lead-free piezoelectric ceramics.  相似文献   

14.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

15.
The Cu0.5Tl0.5Ba2Ca2?y Mg y Cu3O10?δ (y=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0) superconductor has been synthesized at the atmospheric pressure by the solid-state reaction method. The zero resistivity critical temperature is found to increase to 98 K with Mg concentration of y=0.6, but saturates to 97 K with further enhancement of Mg to y=0.8, 1.0, and 1.5. The Mg doped material grows in tetragonal structure and follows P4/mmm symmetry with a &; c-axes lengths of 3.894 Å &; 15.091 Å for y=1.5. The axes lengths were decreased with the increase of Mg content in the unit cell, which shows that anisotropy of the material decreases. The critical current density and the quantity of diamagnetism in the samples with Mg contents are higher than in the samples without Mg. In order to realize the effects of decreased axes lengths on the phonon modes of Cu0.5Tl0.5Ba2Ca2?y Mg y Cu3O10?δ , we have carried out FTIR absorption measurements.  相似文献   

16.
An all-vapor phase MCVD process has been proposed for the fabrication of fiber preforms with a Yb2O3–Al2O3–P2O5–SiO2 multicomponent glass core. We have investigated the tubular preform collapse into a rod and demonstrated approaches capable of preventing P2O5 losses in the central part of the core during the collapse process. Preforms with a flat, perfect step-index profile have been fabricated.  相似文献   

17.
We have studied phase relations in the K2MoO4–Ln2(MoO4)3–Zr(MoO4)2 (Ln = La–Lu, Y) systems by the method of “intersecting cuts,” identified pseudobinary joins in their composition triangles, and constructed their phase compatibility diagrams. The systems have been shown to contain new ternary molybdates with the general formula K5LnZr(MoO4)6 (Ln = Dy–Lu and Y). The thermal characteristics of the synthesized compounds have been studied by differential scanning calorimetry in the temperature range 25–700°C. The new ternary molybdates crystallize in a trigonal structure (sp. gr. R\(\bar 3\)c, Z = 6).  相似文献   

18.
1–1 intergrowth-superlattice-structured Bi3TiNbO9–Bi4Ti3O12 (BTN–BIT) ferroelectric thin films have been prepared on p-Si substrates by sol-gel processing. The precursor films are crystallized in the desired intergrown BTN–BIT superlattice structures by optimizing the processing conditions. Synthesized BTN–BIT thin films annealed below 750 °C are polycrystalline, uniform and crack-free, no pyrochlore phase or other second phase, and exhibited good ferroelectric properties. As the annealing temperature increases from 600 to 700 °C, both remanent polarization P r and coercive electric field E c of BTN–BIT thin films increase, but the pyrochlore phase in BTN–BIT films annealed above 750 °C will impair the ferroelectric properties. The BTN–BIT thin films annealed at 700 °C have a P r value ~19.1μC/cm2 and an E c value ~135 kV/cm.  相似文献   

19.
Gadolinium doped bismuth borate glasses containing up to 30 mol% Y2O3 were prepared by fast melt quenching method. The effect of yttrium on the local order in 3B2O3 · Bi2O3 and B2O3 · Bi2O3 glass matrices, particularly on the bismuth sites, was investigated by infrared (IR) spectroscopy and electron paramagnetic resonance (EPR) of Gd3+ ions. The IR results show that the local structure is more ordered in the glass system with higher bismuth content and the progressive addition of yttrium increases the local disorder in both bismuth–borate glass matrices. The EPR results indicate that Gd3+ ions occupy both bismuth and yttrium sites and reflect the same structural disorder like that suggested by IR results.  相似文献   

20.
In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass–ceramics having different crystal morphologies with SiO2–MgO–Al2O3–K2O–B2O3–F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass–ceramics containing plate like mica crystals. Scratch tests at a high load of 50 N in artificial saliva were carried out in order to simulate the crack–microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel “spherulitic-dendritic” shaped crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the ‘spherulitic-dendritic’ crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent. While modest damage tolerant behavior is observed in case of ‘spherulitic-dendritic’ crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号