首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The thermal behavior of (TeO2) n (MoO3)1–n (n = 0.75, 0.85, 0.90) tellurite glasses has been studied by differential scanning calorimetry in the range from T = 300 to T = 850 K and heat capacity has been measured in the temperature range. The thermodynamic characteristics of the devitrification process and glassy state have been determined. The experimental data obtained have been used to evaluate the standard thermodynamic functions of the system in glassy and supercooled liquid states: heat capacity C p °(T), enthalpy H°(T)–H°(320), entropy S°(T)–S°(320), and Gibbs function G°(T)–G°(320) in the temperature range 320–630 K. The composition dependences of the glass transition temperature and thermodynamic functions for the glasses have been obtained. The thermal and thermodynamic properties of the tellurite glasses have been compared to those of previously studied (TeO2) n (WO3)1–n and (TeO2) n (ZnO)1–n glasses.  相似文献   

2.
The crystal structure of a previously unknown Np(V) sesquioxalate, Na4(NpO2)2(C2O4)3·2H2O was studied. The crystal structure consists of neptunyl(V) cations, sodium cations, oxalate anions, and water molecules of crystallization. Neptunyl(V) cations and oxalate ions form anionic chains [(NpO2)2(C2O4)3] n 4n? . The coordination polyhedron (CP) of Np (pentagonal bipyramid) contains two apical “yl” oxygen atoms and five equatorial O atoms of three oxalate ions. The CP of Na(1) and Na(2) cations are combined through the common edges into zigzag chains in the [010] direction. Two independent oxalate ions are tridentate and tetradentate ligands.  相似文献   

3.
The kinetics of thermal dehydration of Mg3(PO4)2 · 8H2O was investigated using thermogravimetry at four different heating rates. The activation energies of the dehydration step of Mg3(PO4)2 · 8H2O were calculated through the isoconversional Ozawa and Kissinger-Akahira-Sunose (KAS) methods and iterative methods, which were found to be consistent and indicate a single mechanism. The possible conversion function of the dehydration reaction for Mg3(PO4)2 · 8H2O has been estimated through the Coats and Redfern integral equation, and a better kinetic model such as random nucleation of the “Avrami–Erofeev equation (A 3/2 model)” was found. The thermodynamic functions (ΔH*, ΔG*, and ΔS*) of the dehydration reaction are calculated by the activated complex theory and indicate that it is a non-spontaneous process when the introduction of heat is not connected.  相似文献   

4.
New Np(VI) and Pu(VI) dimolybdates Rb2NpO2(MoO4)2·H2O (I), Cs2NpO2(MoO4)2·H2O (II), Cs2PuO2(MoO4)2·H2O (III), and Rb2PuO2(MoO4)2·H2O (IV) were synthesized under hydrothermal conditions. The crystal structures of the compounds were determined, and their absorption spectra in the UV, visible, and IR ranges were measured. The compounds crystallize in the monoclinic system. Their crystal structure is based on [AnO2(MoO4)2]n2n anionic layers (An = Np, Pu) formed by (AnO2)O5 pentagonal bipyramids and MoO4 tetrahedra, sharing common vertices. Each An atom in the layer is bonded to other five An atoms via MoO4 tetrahedra with the formation of a 43432 network. The effect of the ionic radius of the outer-sphere cation on the parameters of the crystal structure and features of the absorption spectra is discussed.  相似文献   

5.
In this paper, the effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the phase formation, sintering characteristic, the microstructure and microwave dielectric properties of temperature-stable (Mg0.95Co0.05)2TiO4–Li2TiO3 ceramics were investigated. (Mg0.95Co0.05)2TiO4–Li2TiO3 powders were obtained by using the traditional solid-state process. A small amount of LBBS doping can effectively reduce sintering temperature and promote the densification of the ceramics. X-ray diffraction analysis revealed not only the primary phase (Mg·Co)2TiO4 associated with Li2TiO3 minor phase but also a third phase (Mg·Co)TiO3. The dielectric constant and Qf values vary with the doping amount of LBBS and sintering temperatures. With the compensation of the positive temperature coefficient (τ f ) of Li2TiO3 and the negative τ f of (Mg0.95Co0.05)2TiO4, the τ f of the specimens fluctuates around zero. The (Mg0.95Co0.05)2TiO4 ceramic with 2.5 wt% LBBS addition and sintering at 900?°C for 4 h exhibited excellent microwave dielectric properties: ? r ?=?19.076, Qf?=?126100 GHz, and τ f ?=?0.98 ppm/°C.  相似文献   

6.
In this study, the xLaCrO3–(1?x)Mg(Al0.7Cr0.3)2O4 (x?=?0.1, 0.2, 0.3, 0.4) negative temperature coefficient composite ceramics were fabricated through conventional solid state reaction at 1650?°C. X-ray diffraction analysis has revealed that the sintered ceramics are consisted of cubic spinel Mg(Al0.7Cr0.3)2O4 phase and orthorhombic perovskite LaCrO3 phase. The obtained values of \({{\rho }_{\text{300}}}\) and \({{B}_{400/800}}\) and \({{E}_{\text{a}}}\) are in the range of 1.55?×?102–1.41?×?108 Ωcm, 756–11317 K, 0.065–0.976 eV, respectively. The electrical properties of these ceramics can be adjusted by the LaCrO3 contents. Such ceramics could be suitable for high temperature NTC thermistor application.  相似文献   

7.
This paper presents a detailed study of phase formation processes in the AgNO3–Sb2O3–MoO3 system during heating in air. The compositions of the solid-state reaction products have been determined using thermogravimetry and qualitative X-ray diffraction. The results demonstrate that, at a final heat treatment temperature of 1023 K, synthesis yields a range of Ag2–xSb2–xMo x O6 compounds with the pyrochlore structure and 0.0 ≤ x ≤ 2.0. The structural parameters of the synthesized phases have been refined by the Rietveld method in space group Fd3?m and their electrical conductivity has been measured.  相似文献   

8.
This paper presents results on the kinetics and mechanism of the physicochemical interaction of InAs, InSb, GaAs, and GaSb semiconductor surfaces with (NH4)2Cr2O7–HBr–C4H6O6 etching solutions under reproducible hydrodynamic conditions in the case of laminar etchant flow over a substrate. We have identified regions of polishing and nonpolishing solutions and evaluated the apparent activation energy of the process. The surface morphology of the crystals has been examined by microstructural analysis after chemical etching. The results demonstrate that the presence of C4H6O6 in etchants helps to reduce the overall reaction rate and extend the region of polishing solutions.  相似文献   

9.
We have studied in detail the gamma radiation induced changes in the electrical properties of the (TeO2)0·9 (In2O3)0·1 thin films of different thicknesses, prepared by thermal evaporation in vacuum. The current–voltage characteristics for the as-deposited and exposed thin films were analysed to obtain current versus dose plots at different applied voltages. These plots clearly show that the current increases quite linearly with the radiation dose over a wide range and that the range of doses is higher for the thicker films. Beyond certain dose (a quantity dependent on the film thickness), however, the current has been observed to decrease. In order to understand the dose dependence of the current, we analysed the optical absorption spectra for the as-deposited and exposed thin films to obtain the dose dependences of the optical bandgap and energy width of band tails of the localized states. The increase of the current with the gamma radiation dose may be attributed partly to the healing effect and partly to the lowering of the optical bandgap. Attempts are on to understand the decrease in the current at higher doses. Employing dose dependence of the current, some real-time gamma radiation dosimeters have been prepared, which have been found to possess sensitivity in the range 5–55 μGy/μA/cm2. These values are far superior to any presently available real-time gamma radiation dosimeter.  相似文献   

10.
Films 150–200 nm in thickness, with the nominal composition Mg(Fe0.8Ga0.2)2O4 − δ have been grown on (100) single-crystal silicon substrates by ion-beam sputtering in vacuum. The effect of growth and annealing conditions on the crystal structure and morphology of the films has been studied, and the thermal conditions for the growth of spinel-structure films have been optimized.  相似文献   

11.
The purpose of this work is to study the optical properties and crystallization of glasses in the ternary system Bi2O3–MoO3–B2O3. In order to verify the obtaining of bismuth borate crystal phases several glass compositions have been selected for crystallization. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy and UV–Vis spectroscopy. The UV–Vis spectroscopy showed that the obtained glasses are transparent in the visible region. The values of optical band gap (E opt) and changes in cut-off (λc) depending on composition are reported. It was established that the increase in the MoO3 content led to decreasing the transmittance of the glasses. Moreover, the absorption edge shifts towards longer wavelength.  相似文献   

12.
Highly permeable macroporous implants of various architectures for bone grafting have been fabricated by thermal extrusion 3D printing using highly filled β-Ca3(PO4)2/poly(D,L-lactide) (degree of filling up to 70 wt %) and β-Ca3(PO4)2/poly(ε-caprolactone) (degree of filling up to 70 wt %) composite filaments. To modify the surface of the composite macroporous implants with the aim of improving their wettability by saline solutions, we have proposed exposing them to a cathode discharge plasma (2.5 W, air as plasma gas) in combination with subsequent etching in a 0.5 M citric acid solution. It has been shown that the main contribution to changes in the wettability (contact angle) of the composites is made by the changes produced in their surface morphology by etching in a low-temperature plasma and citric acid. An alternative approach to surface modification of the composites is to produce a carbonate hydroxyapatite layer via precipitation from a simulated body fluid solution a factor of 5 supersaturated relative to its natural analog (5xSBF).  相似文献   

13.
Glasses from the CaO–TiO2–P2O5 system have potential use in biomedical applications. Here a method for the sol–gel synthesis of the ternary glass (CaO)0.25(TiO2)0.25(P2O5)0.5 has been developed. The structures of the dried gel and heat-treated glass were studied using high-energy X-ray diffraction. The structure of the binary (TiO2)0.5(P2O5)0.5 sol–gel was studied for comparison. The results reveal that the heat-treated (CaO)0.25(TiO2)0.25(P2O5)0.5 glass has a structure based on chains and rings of PO4 tetrahedra, held together by a combination of electrostatic interaction with Ca2+ ions and by corner-sharing oxygen atoms with TiO6 octahedra. In contrast, the (TiO2)0.5(P2O5)0.5 glass has a structure based on isolated P2O7 units linked together by corner-sharing with TiO6 groups. The results suggest that both the dried gels possess open porous structures. For the (CaO)0.25(TiO2)0.25(P2O5)0.5 sample there is a significant increase in Ca–O coordination number with heat treatment.  相似文献   

14.
The phase relations in the CaGa2S4–GaSe system have been studied using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements, and its Tx phase diagram has been mapped out. The CaGa2S4–GaSe system has been shown to be a pseudobinary join of the ternary system Ca–Ga–Se. The CaGa2S4–GaSe system has been found to contain limited solid solutions based on the constituent selenides. The electrical conductivity of CaGa2S4 has been measured and its current–light behavior and photoelectric properties have been studied.  相似文献   

15.
(Zr0.8Sn0.2)TiO4 (ZST) ceramics were fabricated via conventional solid-state reaction method. Sintering behavior, phase composition, microstructure and microwave dielectric properties of Y2O3–ZnO doped ZST ceramics were investigated. Only a single ZST phase was identified by X-ray diffraction patterns. The variation tendencies of dielectric constants as well as Q × f values were in accordance with the bulk densities. The appropriate Y2O3 and ZnO additions could not only efficiently lower the sintering temperature to 1240 °C, but also noticeably improve the densification and microwave dielectric properties of ZST ceramics. But excessive additives deteriorated the microstructures and comprehensive properties of samples. A dielectric constant ε r of 39.73, a Q × f value of 48,545 GHz (at 5.5 GHz), and a τ f value of ?2.13 ppm/°C were obtained for 1 wt% ZnO doped ZST ceramics with 0.5 wt% Y2O3 addition sintered at 1240 °C.  相似文献   

16.
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C.  相似文献   

17.
Herein, we report the results of the in vitro dissolution tests, which were carried out by immersing the selected glass-ceramic samples in artificial saliva (AS) for various time periods of up to 42 days. In our experiments, the SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics with different crystal morphology and crystal content were used and a comparison is also made with the baseline glass samples (without any crystals). The bioactivity of the samples was probed by measuring the changes in pH, ionic conductivity and ionic concentration of AS following in vitro dissolution experiments. High resistance of the selected glass-ceramic samples against in vitro leaching has been demonstrated by minimal weight loss (<1%) and insignificant density change, even after 6 weeks of dissolution in artificial saliva. While XRD analysis reveals the change in surface texture of the crystalline phase, FT-IR analysis weakly indicated the Ca-P compound formation on the leached surface. The experimental measurements further indicate that the leaching of F(-), Mg(2+) ions from the sample surface commonly causes the change in the surface chemistry. Furthermore, the presence of (Ca, P, O)-rich mineralized deposits on the leached glass-ceramic surface as well as the decrease in Ca(2+) ion concentrations in the leaching solutions (compared to that in the initial AS solution) provide evidences of the moderate bioactive or mild biomineralisation behaviour of investigated glass-ceramics.  相似文献   

18.
Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO · (52 ? x)SiO2 · 4P2O5  · xFe2O3 · 3Na2O (2 ≤ x ≤ 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050°C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x ≥ 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them.  相似文献   

19.
Multiferroic ceramic composites of (1?x)Ba0.96Ca0.04TiO3–(x)ZnFe2O4 (BCT-ZF) were prepared from ferroelectric (FE) barium calcium titanate (BCT) and ferromagnetic (FM) zinc ferrite (ZF) by using the solid state reaction method with different mol% fractions of x (x?=?0.1 and 0.2). The preliminary structural studies carried out by X-ray diffraction at room temperature reveals that the samples have a tetragonal structure along with the cubic spinel ferrite phase. Raman spectra of the composites also confirm the existence of BCT phase and ZF phase. The room temperature ferroelectric polarization measurements as a function of magnetic field show the existence strong magnetoelectric coupling of 10.85 (mV/(cm.Oe).  相似文献   

20.
We have studied the nature and kinetics of the chemical interaction of InAs, InSb, GaAs, and GaSb crystals with aqueous (NH4)2Cr2O7–HBr solutions. The dissolution rate of the crystals has been measured as a function of etchant composition, solution stirring rate, and temperature. The results demonstrate that the dissolution rate of the semiconductors is diffusion-limited. We have determined the composition ranges of polishing solutions, optimized their compositions, and found conditions for the dynamic chemical polishing of the semiconductors. Ultrasmooth polished semiconductor surfaces have been obtained, with R a ≈ 1 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号