首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

2.
This article describes a novel hydrothermal deposition method for preparing highly dispersed NiW/γ-Al2O3 catalysts and demonstrates its advantages over the conventional impregnation method. Via the hydrothermal precipitation reactions between sodium tungstate and hydrochloric acid and between nickel nitrate and urea, respectively, the active species W and Ni were deposited on γ-Al2O3. In the hydrothermal deposition of WO3, a surfactant hexadecyltrimethyl ammonium bromide (CTAB) was used to prevent the aggregation of WO3. The characterization results obtained by means of X-ray photoelectron spectroscopy (XPS), N2 adsorption and high-resolution transmission electron microscopy (HRTEM) measurements showed that compared with the catalyst prepared by the conventional impregnation method, the catalyst with the same metal contents prepared by the hydrothermal deposition had much higher W and Ni dispersion, higher specific surface area, larger pore volume, the significantly decreased slab length and slightly increased stacking degree of sulfided W species, leading to the significantly enhanced dibenzothiophene (DBT) hydrodesulfurization (HDS) activity. The DBT HDS assessment results also revealed that the catalyst containing 17.7 wt% WO3 and 2.4 wt% NiO prepared by the hydrothermal deposition method had the similar DBT HDS activity as a commercial NiW/γ-Al2O3 catalyst containing 23 wt% WO3 and 2.6 wt% NiO, resulting in the greatly decreased amount of active metals for achieving the same HDS activity.  相似文献   

3.
Desulfurization of Transportation Fuels by Adsorption   总被引:9,自引:0,他引:9  
This paper is a review on sorbents for desulfurization of transportation fuels (gasoline, diesel, and jet fuel). Since the π-complexation sorbents are the most promising, they are the focus of the discussion. During π-complexation, the thiophenic compounds can bind selectively to the sorbents, especially the substituted ones. The later remain highly unreacted in hydrodesulfurization (HDS) (i.e., “refractory” sulfur). Molecular orbital (MO) calculations and experiments have shown that these refractory compounds [(e.g., 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (DMDBT)] bind strongly with the π-complexation sorbents because of a better electron donation/back-donation ability. The sorbents reviewed include Ag-Y, Cu(I)-Y, Ni(II)-Y, and Ni(II)-X zeolites prepared using various ion-exchange techniques. The techniques included vapor and solid-state ion exchanges, which are suitable for obtaining high loadings of transition metals. The best sorbent, Cu(I)-Y [vapor-phase ion-exchanged (VPIE)], is capable of producing almost 38 cm3 of desulfurized fuel per g of sorbent with a sulfur concentration of less than 0.2 ppmw. Using these π-complexation sorbents in layered bed matrices further increases the desulfurization capacity.  相似文献   

4.
A series of phosphorus promoted γ-Al2O3 supported NiMo carbide catalysts with 0–4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H2 temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/γ-Al2O3 carbide, increased the dispersion of β-Mo2C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/γ-Al2O3 carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/γ-Al2O3 carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/γ-Al2O3 carbide catalysts showed enhanced HDN activity compared to the NiMo/γ-Al2O3 catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/γ-Al2O3 carbide with LGO and dibenzothiophene. P addition to NiMo/γ-Al2O3 carbide accelerated CN bond breaking and thus increased the HDN activity.  相似文献   

5.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

6.
通过制备高纯度的前驱体湃铝石获得了η-Al2O3材料,采用XRD验证了η-Al2O3与γ-Al2O3在晶相结构上的差异,比较了两者的表面形貌、织构及酸碱性能,结果显示,η-Al2O3与γ-Al2O3的比表面积相当,但η-Al2O3具有更弱的弱碱位和较少的强碱位,并拥有丰富的中等强度酸性位。将η-Al2O3与γ-Al2O3作为催化剂应用于CS2水解反应,结果表明,在(200~450) ℃测试温度范围内,η-Al2O3催化剂对CS2的水解活性始终优于γ-Al2O3,两种催化剂上CS2反应的浓度效应也明显不同,推测与它们的酸碱性质影响了对CS2的吸附能力有关,导致两者催化CS2水解反应遵循了不同的机制。  相似文献   

7.
A kind of desulfurization adsorbent, (Ni/W)-γ-Al2O3 microsphere, was prepared by a new method of in situ chemical reduction. The adsorbent consists of active components (transition metals Ni and W) and a carrier (γ-Al2O3). Ni and W in γ-Al2O3 microspheres are fine in size and can be distributed homogeneously on the surface and inside of the γ-Al2O3 carrier. The desulfurization of the adsorbent made by the in situ chemical reduction method was carried out in model gasoline. Its desulfurization capacity increases 23% in comparison with that made by the conventional impregnation method. The composition and configuration of adsorbents were analyzed by scanning electron microscopy (SEM), electron energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The in situ chemical reduction method offers a new and promising method for preparation of desulfurization adsorbents containing active components.  相似文献   

8.
以廉价无机铝盐硫酸铝为原料,氨水为沉淀剂,十二烷基硫酸钠为添加剂,采用简单沉淀法制备得到较大比表面积γ-Al2O3。通过N2低温物理吸附-脱附、X射线衍射、红外光谱、热重、元素分析、扫描及透射电镜等,研究制备过程中沉淀温度、溶液pH值和添加剂用量对产物γ-Al2O3及其前驱体的晶相结构、形貌织构等性质的影响。结果表明,在沉淀温度75 ℃、硫酸铝浓度0.25 mol·L-1、溶液pH=9.0、老化时间12 h和n(十二烷基硫酸钠)∶n[Al2(SO4)3]=0.375∶1条件下,所得前驱体(拟薄水铝石)经600 ℃焙烧后,可获得大比表面积(416.65 m2·g-1)γ-Al2O3,并且样品中因十二烷基硫酸钠添加,引入的S及Na等杂质含量极少。  相似文献   

9.
利用等体积浸渍法制备K2CO3/γ-A12O3负载型固体碱催化剂,应用于棉籽油和甲醇酯交换反应制备生物柴油。对催化剂使用前的保存条件、水分、重复使用性能、游离脂肪酸影响以及失活和再生进行了分析。结果表明,固体催化剂K2CO3/γ-Al2O3具有较好的抗水性,酸度对催化剂影响明显,重复使用4次未经活化的催化剂,催化活性明显降低,催化剂应密封保存。K2CO3/γ-A12O3负载型固体碱催化剂经济实惠且催化效果良好。  相似文献   

10.
Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure were prepared by using a citric acid sol–gel method, and their catalytic performance for complete oxidation of methanol and ethanol was evaluated and compared with that of the γ-Al2O3-supported catalysts, Ag/γ-Al2O3, Pt/γ-Al2O3, and Pd/γ-Al2O3. The results showed that the Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure displayed the activity significantly higher than that of the supported precious metal catalysts, 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 in the temperature range of 370–573 K. Over a 6%Ag/20%La0.6Sr0.4MnO3/γ-Al2O3 catalyst, the T95 temperature for methanol oxidation can be as low as 413 K. Even at such low reaction temperature, there were little HCHO and CO detected in the reaction exit-gas. However, for the 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 catalysts, the HCHO content in the reaction exit-gas reached 200 and 630 ppm at their T95 temperatures. Over a 6%Ag/La0.6Sr0.4MnO3 catalyst, the T95 temperature for ethanol oxidation can be as low as 453 K, with a corresponding content of CH3CHO in the exit-gas at 782 ppm; when ethanol oxidation is performed at 493 K, the content of acetaldehyde in the exit-gas can be below 1 ppm. Characterization of the catalysts by X-ray diffraction (XRD), TEM, XPS, laser Raman spectra (LRS), hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) methods revealed that both the surface and the bulk phase of the perovskite La0.6Sr0.4MnO3 played important roles in the catalytic oxidation of the alcohols, and that γ-Al2O3 as the bottom carrier could be beneficial in creating a large surface area of catalyst. Moreover, a small amount of Ag+ doped onto the surface of La0.6Sr0.4MnO3 was able to partially occupy the positions of La3+ and Sr2+ due to their similar ionic radii, and thus, became stabilized by the perovskite lattice, which would be in favor of preventing the aggregation of the Ag species on the surface and enhancing the stability of the catalyst. On the other hand, modification of the Ag+ to the surface of La0.6Sr0.4MnO3 resulted in an increase in relative content of the surface O22−/O species highly reactive toward the alcohols and aldehydes as well as CO. Besides, solution of low-valence metal oxides SrO and Ag2O with proper amounts in the lattice of the trivalent metal perovskite-type oxide LaMnO3 would also lead to an increase in the content of the reducible Mnn+ and the formation of anionic vacancies, which would be favorable for the adsorption-activation of oxygen on the functioning catalyst and the transport of the lattice and surface oxygen species. All these factors would contribute to the pronounced improvement of the catalyst performance.  相似文献   

11.
A single-step complex decomposition method for the synthesis of bulk and alumina-supported γ-Mo2N catalysts is described. The complex precursor (HMT)2(NH4)4Mo7O24·2H2O (HMT: hexamethylenetetramine) is converted to γ-Mo2N under a flow of Ar in a temperature range of 823–1023 K. Furthermore, decomposition of the precursor in a NH3 flow forms γ-Mo2N in a temperature range of 723–923 K. Compared with direct decomposition of the precursor in Ar, the reaction in NH3 shows obvious advantages that the nitride forms at a lower temperature. In addition, alumina-supported γ-Mo2N catalysts with different nitride loadings can be prepared from the alumina-supported complex precursor in the Ar or NH3 flow. The resultant catalysts exhibit good dibenzothiophene HDS activities, which are similar to the γ-Mo2N/γ-Al2O3 prepared by traditional TPR method. The catalyst prepared by decomposition in an Ar flow exhibits highest activity. It proves that such a single-step complex decomposition method possesses the potential to be a general route for the preparation of molybdenum nitride catalysts.  相似文献   

12.
作为合成气制乙二醇关键步骤之一,CO与亚硝酸甲酯合成草酸二甲酯备受关注。综述了近年来CO气相偶联合成草酸二甲酯Pd/α-Al2O3催化剂失活与再利用研究进展,探讨催化剂再利用工艺存在的问题,指出应根据在工业应用中出现的问题对Pd/α-Al2O3催化剂进行失活研究,在此基础上开发针对性的再生工艺;钯催化剂回收方面萃取法和吸附法逐渐成为研究重点,高效、低耗、短流程绿色工艺的开发是失活钯催化剂再利用的发展方向。  相似文献   

13.
O. Demoulin  M. Navez  P. Ruiz 《Catalysis Today》2006,112(1-4):153-156
Operando DRIFTS was applied to the study of the evolution of surface species formed on a Pd (2 wt.%)/γ-Al2O3 catalyst in various conditions. No differences were observed as a function of the initial oxidation state of palladium. Formates/carbonates species were identified at low temperature (<400 °C) and disappeared when CO2 production started. These species come from the Pd-catalyzed interaction of CO with the alumina support, while CO2 induces hydrogenocarbonates formation at low temperature (<300 °C). Their presence does not explain the inhibiting effect of CO2 observed in CCM on Pd/γ-Al2O3 catalysts.  相似文献   

14.
Lanthanum-doped Pd/γ-Al2O3 and Pd/γ-Al2O3 membranes were prepared by sol-gel methods. The thermal stability of the unsupported Pd/γ-Al2O3 and La/Pd/γ-Al2O3 membranes was investigated with BET (including average pore size, pore volume and BET surface area), XRD, and DTA techniques. The average pore size of the Pd/γ-Al2O3 membranes increased sharply after sintering at temperatures higher than 1000°C. Addition of 3 mol% lanthanum can raise the temperature of the γ-Al2O3 to-Al2O3 phase transformation significantly. This improves the thermal stability of the Pd/γ-Al2O3 catalytic membranes.  相似文献   

15.
Two types of NiO/γ-Al2O3 catalysts prepared by the impregnation and the sol–gel method were used for the partial oxidation of methane to syngas at 850°C (GHSV1.8×105 lkg−1 h−1). The effects of the carbon deposition, the loss and sintering of nickel and the phase transformation of γ-Al2O3 support on the catalytic performance during 80 h POM reaction were investigated with a series of characterization such as XRD, BET, AAS, TG, and XPS. The results indicated that the carbon deposition and the loss and sintering of nickel could not cause the serious decrease of catalytic performance over NiO/γ-Al2O3 catalyst during the short-time reaction. However, the slow process of the support γ-Al2O3 phase transforming into -Al2O3 could slowly decrease the performance of NiO/γ-Al2O3 catalysts. Aimed at the reasons of the deactivation, an improved catalyst was obtained by the complexing agent-assisted sol–gel method.  相似文献   

16.
Nanosized γ-Al2O3 particles were prepared by the sol–gel method with aluminum ion hydrolysis control performed by nitric acid. The as-prepared particles were mixed with deionized-water and stabilizer, and cycled in a high speed sand mill to form a stable γ-Al2O3 suspended slurry, which was then coated on the surface of the glass substrate to form a γ-Al2O3 protective film. Observations of SEM and visible transmission spectra show that a well-dispersed γ-Al2O3 slurry could be obtained after three-cycle grinding suitable to coat fluorescent lamp glass with a dense and uniform film of visible light transmission up to 95%.  相似文献   

17.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

18.
刘思乐  王凯  陶洋  单译  李德豹 《工业催化》2017,25(10):70-74
以γ-Al2O3为载体,采用等体积分步浸渍法制备了以Ni为活性组分,La、Ce、Fe、Cr、Co为助剂的催化剂M/γ-Al2O3,在固定床管式反应器中研究了M/γ-Al2O3催化剂的性能,考察了反应温度、水碳比和空速对氢产率的影响,并对催化剂进行XRD、SEM和BET表征。结果表明,NiLaCeFeCrCo/γ-Al2O3催化剂具有较好的催化性能,在反应温度700 ℃、水碳物质的量比10和空速6 min-1的条件下,氢产率达到27.335 mol·mol-1,并在300 min内表现出较好的活性,平均氢产率为21.966 mol·mol-1。  相似文献   

19.
The oxidation of CH4 over Pt–NiO/δ-Al2O3 has been studied in a fluidised bed reactor as part of a major project on an autothermal (combined oxidation–steam reforming) system for CH4 conversion. The kinetic data were collected between 773 and 893 K and 101 kPa total pressure using CH4 and O2 compositions of 10–35% and 8–30%, respectively. Rate–temperature data were also obtained over alumina-supported monometallic catalysts, Pt and NiO. The bimetallic Pt–NiO system has a lower activation energy (80.8 kJ mol−1) than either Pt (86.45 kJ mol−1) and NiO (103.73 kJ mol−1). The superior performance of the bimetallic catalyst was attributed to chemical synergy. The reaction rate over the Pt–NiO catalyst increased monotonically with CH4 partial pressure but was inhibited by O2. At low partial pressures (<30 kPa), H2O has a detrimental effect on CH4 conversion, whilst above 30 kPa, the rate increased dramatically with water content.  相似文献   

20.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号