首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diospyrin is a plant product that has significant inhibitory effect on the growth of Leishmania donovani promastigotes. This compound inhibits the catalytic activity of DNA topoisomerase I of the parasite. Like camptothecin, it induces topoisomerase I mediated DNA cleavage in vitro. Treatment of DNA with diospyrin before addition of topoisomerase I has no effect. Preincubation of topoisomerase I with diospyrin before the addition of DNA in the relaxation reaction increases this inhibition. Our results suggest that this bis-naphthoquinone compound exerts its inhibitory effect by binding with the enzyme and stabilizing the topoisomerase I-DNA "cleavable complex." Diospyrin is a specific inhibitor of the parasitic topoisomerase I. It does not inhibit type II topoisomerase of L. donovani and requires much higher concentrations to inhibit type I topoisomerase of calf thymus. The potent inhibitory effect of diospyrin on type I DNA topoisomerase from L. donovani can be exploited for rational drug design in human leishmaniasis.  相似文献   

2.
Beyond the known mutagenic properties of DNA lesions, recent evidence indicates that several forms of genomic damage dramatically influence the catalytic activities of DNA topoisomerases. Apurinic sites, apyrimidinic sites, base mismatches, and ultraviolet photoproducts all enhance topoisomerase I-mediated DNA cleavage when they are located in close proximity to the point of scission. Furthermore, when located between the points of scission of a topoisomerase II cleavage site, these same lesions (with the exception of ultraviolet photoproducts) greatly stimulate the cleavage activity of the type II enzyme. Thus, as found for anticancer drugs, lesions have the capacity to convert topoisomerases from essential cellular enzymes to potent DNA toxins. These findings raise exciting new questions regarding the mechanism of anticancer drugs, the physiological functions of topoisomerases, and the processing of DNA damage in the cell.  相似文献   

3.
The interaction of topoisomerase II with its DNA cleavage site is critical to the physiological functions of the enzyme. Despite this importance, the specific enzyme-DNA interactions that drive topoisomerase II-mediated DNA cleavage and religation are poorly understood. Therefore, to dissect interactions between the enzyme and its cleavage site, abasic DNA lesions were incorporated into a bilaterally symmetrical and identical cleavage site. Results indicate that topoisomerase II has unique interactions with each position of the 4-base overhang generated by enzyme-mediated DNA cleavage. Lesions located 2 bases 3' to the point of scission stimulated cleavage the most, whereas those 3 bases from the point of scission stimulated cleavage the least. Moreover, an additive and in some cases synergistic cleavage enhancement was observed in oligonucleotides that contained multiple DNA lesions, with levels reaching >60-fold higher than the wild-type substrate. Finally, topoisomerase II efficiently cleaved and religated a DNA substrate in which apyrimidinic sites were simultaneously incorporated at every position on one strand of the 4-base overhang. Therefore, unlike classical DNA ligases in which base pairing is the driving force behind closure of the DNA break, it appears that for topoisomerase II, the enzyme is responsible for the spatial orientation of the DNA termini for ligation.  相似文献   

4.
Topoisomerase II is the target for several highly active anticancer drugs that induce cell death by enhancing enzyme-mediated DNA scission. Although these agents dramatically increase levels of nucleic acid cleavage in a site-specific fashion, little is understood regarding the mechanism by which they alter the DNA site selectivity of topoisomerase II. Therefore, a series of kinetic and binding experiments were carried out to determine the mechanistic basis by which the anticancer drug, etoposide, enhances cleavage complex formation at 22 specific nucleic acid sequences. In general, maximal levels of DNA scission (i.e. Cmax) varied over a considerably larger range than did the apparent affinity of etoposide (i.e. Km) for these sites, and there was no correlation between these two kinetic parameters. Furthermore, enzyme.drug binding and order of addition experiments indicated that etoposide and topoisomerase II form a kinetically competent complex in the absence of DNA. These findings suggest that etoposide. topoisomerase II (rather than etoposide.DNA) interactions mediate cleavage complex formation. Finally, rates of religation at specific sites correlated inversely with Cmax values, indicating that maximal levels of etoposide-induced scission reflect the ability of the drug to inhibit religation at specific sequences rather than the affinity of the drug for site-specific enzyme-DNA complexes.  相似文献   

5.
Apurinic sites are position-specific poisons of topoisomerase II and stimulate DNA scission approximately 10-18-fold when they are located within the 4-base overhang generated by enzyme-mediated cleavage (Kingma, P. S., and Osheroff, N. (1997) J. Biol. Chem. 272, 1148-1155). To determine whether other major forms of spontaneous DNA damage also act as topoisomerase II poisons, the effects of position-specific apyrimidinic sites and deaminated cytosines (i.e. uracil:guanine mismatches) on the type II enzyme were determined. Both of these lesions stimulated topoisomerase II-mediated DNA scission with the same positional specificity as apurinic sites but were less efficacious. Moreover, apurinic sites dominated the effects of apyrimidinic sites in substrates that contained multiple lesions. The differential ability of spontaneous lesions to enhance DNA cleavage did not correlate with either a decreased stability of the double helix or the size of the gap formed by base loss. Rather, it appears to be due (at least in part) to increased rates of religation for substrates containing apyrimidinic sites or deaminated cytosines. These results suggest that several forms of spontaneous DNA damage are capable of acting as endogenous poisons of topoisomerase II.  相似文献   

6.
A novel, heat-resistant and Pronase-sensitive, inhibitor of eukaryotic DNA topoisomerase I has been purified from Xenopus laevis ovaries. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the most purified fraction revealed three bands with apparent molecular masses of 25, 28.5, and 33.5 kDa. The 25- and 33.5-kDa peptides recovered from an SDS-PAGE gel inhibited X. laevis DNA topoisomerase I. The purified inhibitor was specific to DNA topoisomerase I and did not inhibit other DNA enzymes tested. The inhibitor blocked the catalytic activity of DNA topoisomerase I by interacting with the enzyme, rather than by competing for binding sites on substrate DNA. Binding of DNA topoisomerase I to substrate DNA was blocked by the inhibitor, as was the cleavage reaction catalyzed by DNA topoisomerase I. Inhibition of DNA topoisomerase I was relieved by divalent cations Ca2+, Mg2+, or Mn2+.  相似文献   

7.
DNA methylation is deregulated during oncogenesis. Since several major anti-cancer drugs act on topoisomerases, we investigated the effects of cytosine methylation on topoisomerase cleavage activities. Both topoisomerase I and II cleavage patterns were modified by CpG methylation in c-myc gene DNA fragments. Topoisomerase II changes, mainly cleavage reduction, occurred for methylation sites within 7 base pairs from the topoisomerase II breaks and were different for VM-26 and azatoxin. For topoisomerase I, cleavage enhancement as well as suppression were observed. Using synthetic methylated oligonucleotides, we show that hemimethylation is sufficient to alter topoisomerase I activity. Cytosine methylation on the scissile strand within the topoisomerase I consensus sequence had strong effects. Cleavage was stimulated by methylation at position -4 and was strongly inhibited by methylation at position -3 (with position -1 being the enzyme-linked nucleotide). This inhibitory effect was attributed to the presence of a methyl group in the major groove, since the transition uracil to thymine also inhibited cleavage. Altogether these results suggest an interaction of topoisomerase I with the DNA major grove at positions -3 and -4. In addition, DNA methylation may have profound effects on the activity of topoisomerases and may alter the distribution of cleavage sites produced by anticancer drugs in chromatin.  相似文献   

8.
Topoisomerase II is the cytotoxic target for a number of clinically relevant antitumor drugs. Berberrubine, a protoberberine alkaloid which exhibits antitumor activity in animal models, has been identified as a specific poison of topoisomerase II in vitro. Topoisomerase II-mediated DNA cleavage assays showed that berberrubine poisons the enzyme by stabilizing topoisomerase II-DNA cleavable complexes. Subsequent proteinase K treatments revealed that berberrubine-induced DNA cleavage was generated solely by topoisomerase II. Topoisomerase II-mediated DNA religation with elevated temperature revealed a substantial reduction in DNA cleavage induced by berberrubine, to the extent comparable to that of other prototypical topoisomerase II poison, etoposide, suggesting that DNA cleavage involves stabilization of the reversible enzyme-DNA cleavable complex. However, the step at which berberrubine induces cleavable complex may differ from that of etoposide as revealed by the difference in the formation of the intermediate product, nicked DNA. This suggests that berberrubine's primary mode of linear formation may involve trapping nicked molecules, formed at transition from linear to covalently closed circular DNA. Unwinding of the duplex DNA by berberrubine is consistent with an intercalative binding mode for this compound. In addition to the ability to induce the cleavable complex mediated with topoisomerase II, berberrubine at high concentrations was shown to specifically inhibit topoisomerase II catalytic activity. Berberrubine, however, did not inhibit topoisomerase I at concentrations up to 240 microM. Cleavage sites induced by topoisomerase II in the presence of berberrubine and etoposide were mapped in DNA. Berberrubine induces DNA cleavage in a site-specific and concentration-dependent manner. Comparison of the cleavage pattern of berberrubine with that of etoposide revealed that they share many common sites of cleavage. Taken together, these results indicate that berberrubine represents a new class of antitumor agent which exhibits the topoisomerase II poison activity as well as catalytic inhibition activity and may have a potential clinical value in cancer treatment.  相似文献   

9.
Bulgarein, a fungal metabolite, induced mammalian topoisomerase I-mediated DNA cleavage in vitro. The cleavage activity of bulgarein was comparable to that of camptothecin at a drug concentration range of 0.025-approximately 5 microM. The DNA cleavage induced by bulgarein was suppressed at concentrations above 12.5 microM. Treatment of a reaction mixture containing bulgarein and topoisomerase I with elevated temperature (65 degrees C) resulted in a substantial reduction in DNA cleavage, suggesting that the topoisomerase I-mediated DNA cleavage induced by bulgarein is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex." Intensity of cleaved DNA fragments induced by bulgarein with topoisomerase I was different from that induced by camptothecin. Bulgarein inhibited catalytic activities of both topoisomerase I and topoisomerase II. The changes in absorption spectra of bulgarein in the visible region observed upon addition of increasing amounts of calf thymus DNA indicate that bulgarein interacts with DNA. DNA (un)winding assay by two-dimensional gel electrophoresis showed that bulgarein induced the winding of DNA in the opposite direction to that of an intercalator so that positively supercoiled molecules are produced. Thus, bulgarein represents a new class of drugs which stabilizes the cleavable complex of topoisomerase I and alters the structure of DNA in a manner leading to a tightening of the helical twist.  相似文献   

10.
A 30-kDa DNA topoisomerase has been purified to near homogeneity from the purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus. The enzyme is recognized by an antibody against a 16-mer peptide sequence from human DNA topoisomerase I. The purified enzyme is a type I topoisomerase. Consistent with the properties of other prokaryotic type I DNA topoisomerases, the isolated enzyme is unable to relax positively supercoiled DNA and absolutely requires divalent cations for its relaxation activity. However, regardless of the Mg+2 concentrations, ATP concentrations above 5 mM completely inhibit the relaxing activity. The enzyme is sensitive to high salt concentrations and the optimal activity occurs at salt concentrations between 3 and 30 mM for monovalent cations. Single-stranded M13 DNA is a strong inhibitor of this relaxing activity. The enzyme is inhibited by ethidium bromide, confirming that this DNA topoisomerase is incapable of relaxing positive supercoils. Topoisomerase I-specific inhibitors like Hoechst 32258 and actinomycin D inhibit the enzymatic activity while the enzyme is resistant to type II topoisomerase inhibitors such as norfloxacin, nalidixic acid, and novobiocin. From these enzymatic characteristics, we conclude that the R. capsulatus DNA topoisomerase is a prokaryotic type I DNA topoisomerase.  相似文献   

11.
A Chinese hamster ovary (CHO) cell line highly resistant to the non-cleavable complex-forming topoisomerase II inhibitor dexrazoxane (ICRF-187, Zinecard) was selected. The resistant cell line (DZR) was 1500-fold resistant (IC50 = 2800 vs 1.8 microM) to continuous dexrazoxane exposure. DZR cells were also cross-resistant (8- to 500-fold) to other bisdioxopiperazines (ICRF-193, ICRF-154, and ICRF-186), and somewhat cross-resistant (4- to 14-fold) to anthracyclines (daunorubicin, doxorubicin, epirubicin, and idarubicin) and etoposide (8.5-fold), but not to the other non-cleavable complex-forming topoisomerase II inhibitors suramin and merbarone. The cytotoxicity of dexrazoxane to both cell lines was unchanged in the presence of the membrane-active agent verapamil. DZR cells were 9-fold resistant to dexrazoxane-mediated inhibition of topoisomerase II DNA decatenation activity compared with CHO cells (IC50 = 400 vs 45 microM), but were only 1.4-fold (IC50 = 110 vs 83 microM) resistant to etoposide. DZR cells contained one-half the level of topoisomerase II protein compared with parental CHO cells. However, the specific activity for decatenation using nuclear extract topoisomerase II was unchanged. Etoposide (100 microM)-induced topoisomerase II-DNA complexes in DZR cells and isolated nuclei were similarly one-half the level found in CHO cells and in isolated nuclei. However, the ability of 500 microM dexrazoxane to inhibit etoposide (100 microM)-induced topoisomerase II-DNA covalent complexes was reduced 4- to 6-fold in both DZR cells and nuclei compared with CHO cells and nuclei. In contrast, there was no differential ability of aclarubicin or merbarone to inhibit etoposide-induced topoisomerase II-DNA complexes in CHO compared with DZR cells and isolated nuclei. It was concluded that the DZR cell line acquired its resistance to dexrazoxane mainly through an alteration in the topoisomerase II target.  相似文献   

12.
To better define the role of the amino sugar in the pharmacological and biochemical properties of anthracyclines related to doxorubicin and daunorubicin, we have investigated the effects of various substituents at the 3'- and 4'-positions of the drug on cytotoxic activity and ability to stimulate DNA cleavage mediated by DNA topoisomerase II. The study shows that the nature of the substituent at the 3'-position but not the 4'-position is critical for drug ability to form cleavable complexes. The amino group at the 3'-position is not essential for cytotoxic and topoisomerase II-targeting activities, because it can be replaced by a hydroxyl group without reduction of activity. However, the presence of bulky substituents at this position (i.e., morpholinyl derivatives) totally inhibited the effects on the enzyme, thus supporting previous observations indicating that the cytotoxic potencies of these particular derivatives are not related to topoisomerase II inhibition. This conclusion is also supported by the observation that 3'-morpholinyl and 3'-methoxymorpholinyl derivatives are able to overcome atypical (i.e., topoisomerase II-mediated) multidrug resistance. Because a bulky substituent at the 4'-position did not reduce the ability to stimulate DNA cleavage, these results support a critical role of the 3'-position in the drug interaction with topoisomerase II in the ternary complex. An analysis of patterns of cross-resistance to the studied derivatives in resistant human tumor cell lines expressing different resistance mechanisms indicated that chemical modifications at the 3'-position of the sugar may have a relevant influence on the ability of the drugs to overcome specific mechanisms of resistance.  相似文献   

13.
DNA topoisomerase VI from the hyperthermophilic archaeon Sulfolobus shibatae is the prototype of a novel family of type II DNA topoisomerases that share little sequence similarity with other type II enzymes, including bacterial and eukaryal type II DNA topoisomerases and archaeal DNA gyrases. DNA topoisomerase VI relaxes both negatively and positively supercoiled DNA in the presence of ATP and has no DNA supercoiling activity. The native enzyme is a heterotetramer composed of two subunits, A and B, with apparent molecular masses of 47 and 60 kDa, respectively. Here wereport the overexpression in Escherichia coli and the purification of each subunit. The A subunit exhibits clusters of arginines encoded by rare codons in E.coli . The expression of this protein thus requires the co-expression of the minor E.coli arginyl tRNA which reads AGG and AGA codons. The A subunit expressed in E.coli was obtained from inclusion bodies after denaturation and renaturation. The B subunit was overexpressed in E.coli and purified in soluble form. When purified B subunit was added to the renatured A subunit, ATP-dependent relaxation and decatenation activities of the hyperthermophilic DNA topoisomerase were reconstituted. The reconstituted recombinant enzyme exhibits a specific activity similar to the enzyme purified from S.shibatae . It catalyzes transient double-strand cleavage of DNA and becomes covalently attached to the ends of the cleaved DNA. This cleavage is detected only in the presence of both subunits and in the presence of ATP or its non-hydrolyzable analog AMPPNP.  相似文献   

14.
A Xenopus laevis casein kinase II-like activity copurified with X. laevis DNA topoisomerase I activity during chromatography on DEAE-cellulose, phosphocellulose, and hydroxylapatite, but the two activities were resolved by chromatography on DNA-agarose [Kaiserman, H. B., Ingebritsen, T. S., & Benbow, R. M. (1988) Biochemistry 27, 3216-3222]. Phosphorylation of the catalytic polypeptides of dephosphorylated X. laevis DNA topoisomerase I by the endogenous X. laevis casein kinase II-like activity apparently resulted in a severalfold increase in catalytic activity. In this study, we show that incubation of purified X. laevis DNA topoisomerase I with electrophoretically homogeneous bovine brain casein kinase II and ATP strongly stimulated catalytic activity. Surprisingly, purified bovine casein kinase II stimulated X. laevis DNA topoisomerase I activity by more than an order of magnitude in the absence of ATP, although ATP resulted in additional stimulation. Other basic proteins, such as histone H1 and HMG proteins, also stimulated X. laevis DNA topoisomerase I catalytic activity 2-3-fold in the absence of ATP. Modulation of catalytic activity by direct physical association (protein-protein interactions) must, therefore, be considered in addition to phosphorylation in assessing the physiological role of casein kinase II and other basic proteins during regulation of X. laevis DNA topoisomerase I activity in vivo.  相似文献   

15.
Demethylation of colchiceinamide (2) and its analogues (3-10) afforded a novel class of mammalian DNA topoisomerase II inhibitors (2a-10a) without displaying tubulin inhibitory activity. All target compounds inhibited the catalytic activity of topoisomerase II at drug concentrations at 100 microM. An in vitro cytotoxicity assay indicated that compounds 3a and 8a were strong and tissue-selective cytotoxic agents against the MCF-7 breast cancer cell line (IC50 = 0.36 and 0.48 microgram/mL, respectively) and the CAKI-1 renal cancer cell line (IC50 = 0.72 and 0.96 microgram/mL, respectively).  相似文献   

16.
17.
Aclarubicin and doxorubicin are DNA binding anthracycline antibiotics of related chemical structure but differing cytotoxic action. Although doxorubicin mediates its cytotoxicity by poisoning the enzyme topoisomerase II, aclarubicin has been hypothesized to inhibit the catalytic action of topoisomerase II. We show here that aclarubicin, in contrast to doxorubicin, is highly effective in inhibiting the action of topoisomerase I. Aclarubicin not only inhibits this enzyme in a cell-free assay but also markedly inhibits DNA-protein cross-linking in H460 human lung adenocarcinoma cells as measured by the K(+)-SDS precipitation technique. It also displaces topoisomerase I from DNA as measured by Western blotting. Aclarubicin reverses the cytotoxicity of both amsacrine and camptothecin in clonogenic survival assays, consistent with the hypothesis that it is a dual topoisomerase I/II inhibitor. We suggest that the self-inhibition of topoisomerase I in short-term assays may mask the underlying activity of aclarubicin as a topoisomerase I poison. In short-term (1-H) drug exposure assays, aclarubicin kills both exponential and plateau phase cells by a non-cell cycle-selective mechanism apparently not involving G2 phase arrest. This may be a consequence of simultaneous inhibition of topoisomerases I and II.  相似文献   

18.
We show herein that human DNA topoisomerase II beta is functional in yeast. It can complement a yeast temperature-sensitive mutation in topoisomerase II. The effect on human topoisomerase II beta of a number of topoisomerase II inhibitors was analysed in a yeast in vivo system and compared with that of human topoisomerase II alpha and wild-type yeast topoisomerase II. A drug permeable yeast strain (JN394 top2-4) was used to analyse the in vivo effects of known anti-topoisomerase II agents on human topoisomerase II beta transformants. A parallel analysis on human topoisomerase II alpha transformants provides the first in vivo analysis of the responses of yeast bearing the individual isoforms to these drugs. The strain was analysed at 35 degrees C, a non-permissive temperature at which only plasmid-borne topoisomerase II is active. A shuttle vector with either human topoisomerase II beta, human topoisomerase II alpha or yeast topoisomerase II under the control of a GAL1 promoter was used. The key findings were that amsacrine produced comparable levels of cell killing with both alpha and beta, whilst etoposide, doxorubicin and mitoxantrone produced higher degrees of cell killing with alpha than with beta or yeast topoisomerase II. Merbarone had the greatest effect on the yeast strain bearing plasmid-borne yeast topoisomerase II. Suramin, quercetin and genistein showed little cell killing in this system. This yeast in vivo system provides a powerful way to analyse the effects of anti-topoisomerase II agents on transformants bearing the individual human isoforms. This system also provides a means of analysing putative drug-resistance mutations in human topoisomerase II beta or to select for drug-resistance mutations in human topoisomerase II beta.  相似文献   

19.
Alterations in the amino acid composition, phosphorylation pattern, or intracellular levels of topoisomerase II have been associated with resistance to antineoplastic agents whose effects are mediated through interactions with this enzyme. To develop a model system with which to investigate the determinants of topoisomerase II sensitivity or resistance to antineoplastic agents that target this enzyme, a cDNA encoding the wild-type Drosophila melanogaster topoisomerase II was ligated into a mammalian expression vector containing a glucocorticoid-inducible mouse mammary tumor virus promoter and transfected into an epipodophyllotoxin-resistant Chinese hamster ovary cell line (VPM(r)-5). In two transfectants carrying an intact, full-length Drosophila topoisomerase II cDNA, exposure to the inducing agent, dexamethasone (10 microM), resulted in complementation of the endogenous mutant topoisomerase II and phenotypic reversion to etoposide sensitivity. In the presence of glucocorticoid, etoposide-induced cytotoxicity increased 20-fold, despite the fact that Drosophila topoisomerase II mRNA expression was only 0.1% of that of the endogenous mammalian topoisomerase II. Induced cells demonstrated a marked increase in DNA single strand breaks compared with uninduced resistant cells, thereby providing biochemical evidence supporting increased DNA strand cleavage due to activation of the Drosophila enzyme. These observations demonstrate the ability of a wild-type Drosophila topoisomerase II to complement a mutant mammalian enzyme and suggest that transfectants capable of conditional topoisomerase II expression represent a useful model for studies of the biochemical pharmacology and structure-function relationships of normal and mutant enzymes.  相似文献   

20.
Amine-carboxyboranes with varying alkyl chain lengths were observed to be potent cytotoxic agents inhibiting the growth of a number of histological types of murine, rat, and human tumors. These agents preferentially reduced L1210 DNA synthesis with marked inhibition of the activities of regulatory enzymes of the purine pathway. Other enzyme activities which were marginally reduced were DNA polymerase alpha, ribonucleoside reductase, dihydrofolate reductase, t-RNA polymerase, and nucleoside kinases. Pyrimidine nucleotide pools were not reduced but DNA strand scission occurred after 24 h incubation with the agents. The amine-carboxyboranes were not DNA topoisomerase II inhibitors at 100 microM. The agents did not cause DNA protein linked breaks themselves; nevertheless, VP-16 [etoposide] induced DNA protein linked breaks were increased two fold in the presence of the agents suggesting synergistic effects. The amine-carboxyboranes decreased protein kinase C mediated phosphorylation of L1210 topoisomerase II protein, potentially decreasing its enzymatic catalytic activity. Thus, the amine-carboxyboranes did not function like VP-16 in affording cleavable products but were synergistic with VP-16 in causing DNA fragmentation. The agents were also additive with VP-16 in reducing tumor cell number, soft-agar colony growth and DNA synthesis and in producing DNA strand scission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号