首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandins are generated through two isoforms of the enzyme cyclooxygenase, the constitutively expressed cyclooxygenase (Cox)-1 and Cox-2, which is induced at sites of inflammation. Selective inhibition of Cox-2 is desirable as this may avoid the gastropathy and platelet inhibition seen with nonselective agents. Moreover, these agents will allow us to examine the relative contribution of the two isoforms to prostaglandin formation in man. We examined the activity of nimesulide, a Cox-2 selective nonsteroidal antiinflammatory drug, in vitro against purified enzymes and in vivo in man. Nimesulide 100 mg twice daily or aspirin 300 mg three times daily were administered randomly for 14 days to 20 subjects complaining of musculoskeletal pain. Serum thromboxane B2 was determined as an index of Cox-1 activity and endotoxin-induced prostaglandin E2 formation in whole blood as an index of Cox-2 activity. Urinary excretion of prostaglandin metabolites was determined by GC/MS. Nimesulide was highly selective against ovine Cox-2, so that at concentrations attained in vivo, it had no effect on Cox-1 but completely suppressed Cox-2. Aspirin markedly inhibited serum thromboxane B2 (181.92 +/- 19.77 to 2.83 +/- 0.96 ng/ml, P <. 002), whereas nimesulide had very little effect (207.53 +/- 47.30 to 181.15 +/- 54.59 ng/ml). In contrast, nimesulide suppresses endotoxin-induced prostaglandin E2 formation (35.03 +/- 8.73 to 2.62 +/- 0.95 ng/ml, P =.002). As expected, aspirin reduced TX metabolite excretion, whereas nimesulide had no significant effect. In contrast, both compounds suppressed PGI2 formation to the same extent. The findings suggest that TX is largely Cox-1 derived. Moreover, Cox-2 is expressed in man and generates prostaglandin I2.  相似文献   

2.
3.
The antipyretic action and the mechanism of action of 4-nitro-2-phenoxymethanesulfonanilide (nimesulide), a new nonsteroidal antiinflammatory drug, were investigated in yeast-induced febrile rats. Yeast-injected rats developed marked fever and exhibited an approximately 7-fold increase in brain levels of prostaglandin E2 and an approximately 2-fold increase in the expression of cyclooxygenase-2 mRNA despite an almost unchanged expression of cyclooxygenase-1 mRNA. Nimesulide produced a dose dependent antipyretic action, which was stronger than that of indomethacin and ibuprofen, and decreased dose dependently the increased brain prostaglandin E2 levels, whereas it did not influence the expression of cyclooxygenase-2 mRNA. It inhibited markedly the enhanced brain cyclooxygenase activity, primarily cyclooxygenase-2, in vivo and dose dependently increased brain cyclooxygenase activity in vitro. These results suggest that the marked antipyretic action of nimesulide is primarily mediated through the selective inhibition of the activity of brain cyclooxygenase-2 induced under febrile conditions.  相似文献   

4.
Sterile perforated polyethylene spheres (wiffle golf balls) were implanted s.c. in beagle dogs. A local inflammatory reaction was elicited within the spheres by injecting carrageenan. Changes in leukocyte count, prostaglandin E2, thromboxane B2 and leukotriene B4 levels were monitored in fluid samples collected over a 24-hr period. Blood samples were also collected at various time points and analyzed for prostaglandin E2 and leukotriene B4 production after ex vivo calcium ionophore treatment. Effects of standard antiinflammatory agents (aspirin, indomethacin, dexamethasone, tenidap and zileuton) and newer cyclooxygenase-2 (COX-2) selective agents (nimesulide, nabumetone and SC-58125) were determined after oral administration. Ex vivo inhibition of cyclooxygenase product synthesis (prostaglandin E2, thromboxane B2) in whole blood was used as an indicator of activity for the constitutive COX-1 isoform, although inhibition of the synthesis of these mediators in the chamber exudate during an inflammatory process is believed to represent COX-2 inhibition. Treatment effects on leukotriene B4 production were also determined both ex vivo in whole blood and in the fluid. All of the compounds tested, except aspirin, inhibited leukocyte infiltration into the fluid exudate. Inhibitors that exert their effects on both isozymes of cyclooxygenase attenuate production of cyclooxygenase metabolites in both the inflammatory exudate and in peripheral blood ex vivo, although COX-2 selective inhibitors only demonstrated activity in the exudate. A 5-lipoxygenase inhibitor (zileuton), a corticosteroid (dexamethasone) and a dual COX-2 selective/5-lipoxygenase inhibitor (RWJ 63556) had similar profiles in that they all inhibited cell infiltration and eicosanoid production in the fluid and also attenuated leukotriene B4 production in both the fluid and blood.  相似文献   

5.
A standardized compression injury of rat spinal cord brought about a time-dependent biphasic production of thromboxane A2 (detected as thromboxane B2) and prostaglandin I2 (detected as 6-ketoprostaglandin F1alpha). Thromboxane B2 was predominant during the first 1 h, whereas the 6-ketoprostaglandin F1alpha level exceeded that of thromboxane B2 at 8 h postinjury. As examined by inhibitor experiments and northern blotting, cyclooxygenase-1 was responsible for the first phase, and cyclooxygenase-2 was involved in the second phase. On compression injury the levels of interleukin-1alpha and -1beta detected as mRNA and protein increased and peaked at 2-4 h. Injection of exogenous interleukin-1alpha into the spinal cord resulted in an increase of cyclooxygenase-2 mRNA content and a predominant production of 6-ketoprostaglandin F1alpha resembling the second phase of eicosanoid production. Concomitantly, extravascular migration of polymorphonuclear leukocytes was enhanced after the interleukin-1alpha injection. These cells together with vascular endothelial cells and glial cells were stained positively with an anti-cyclooxygenase-2 antibody. The results suggest that the immediate eicosanoid synthesis after spinal cord injury was due to the constitutive cyclooxygenase-1 and the delayed synthesis of eicosanoids was attributable to the induction of cyclooxygenase-2 mediated by interleukin-1alpha.  相似文献   

6.
Nimesulide is a selective COX-2 inhibitor used in a variety of inflammatory, pain and fever states. After healthy volunteers received oral nimesulide 100 mg in tablet, granule or suspension form the drug was rapidly and extensively absorbed. Mean peak concentrations (Cmax) of 2.86 to 6.50 mg/L were achieved within 1.22 to 2.75 hours of administration. The presence of food did not reduce either the rate or extent of nimesulide absorption. When nimesulide was administered in the suppository form, the Cmax was lower and occurred later than after oral administration; the bioavailability of nimesulide via suppository ranged from 54 to 64%, relative to that of orally administered formulations. Nimesulide is rapidly distributed and has an apparent volume of distribution ranging between 0.18 and 0.39 L/kg. It is extensively bound to albumin; the unbound fraction in plasma was 1%. The unbound fraction increased to 2 and 4% in patients with renal or hepatic insufficiency. With oral administration, the concentrations of nimesulide declined monoexponentially following Cmax. The estimated mean terminal elimination half-life varied from 1.80 to 4.73 hours. Excretion of the unchanged drug in urine and faeces is negligible. Nimesulide is largely eliminated via metabolic transformation and the principal metabolite is the 4'-hydroxy derivative (M1). Minor metabolites have been detected in urine and faeces, mainly in a conjugated form. Pharmacological tests in vivo have shown that the metabolites are endowed with anti-inflammatory and analgesic properties, although their activity is lower than that of nimesulide. Excretion in the urine and faeces accounted for 50.5 to 62.5% and 17.9 to 36.2% of an orally administered dose, respectively. The total plasma clearance of nimesulide, was 31.02 to 106.16 ml/h/kg, reflecting almost exclusive metabolic clearance. The drug has a low extraction ratio, close to 0.1. With twice daily oral or rectal administration of nimesulide, steady-state was achieved within 24 to 48 hours (2 to 4 administrations); only modest accumulation of nimesulide and M1 occurred. Gender has only a limited influence on the pharmacokinetic profiles of nimesulide and M1. The pharmacokinetic profiles of nimesulide and M1 in children and the elderly did not differ from that of healthy young individuals. Hepatic insufficiency affected the pharmacokinetics of nimesulide and M1 to a significant extent: the rate of elimination of nimesulide and M1 was remarkably reduced in comparison to the rate of elimination in healthy individuals. Therefore, a dose reduction (4 to 5 times) is required in patients with hepatic impairment. The pharmacokinetic profile of nimesulide and M1 was not altered in patients with moderate renal failure and no dose adjustment in patients with creatinine clearances higher than 1.8 L/h is envisaged. Pharmacokinetic interactions between nimesulide and other drugs given in combination [i.e. glibenclamide, cimetidine, antacids, furosemide (frusemide), theophylline, warfarin and digoxin] were absent, or of no apparent clinical relevance.  相似文献   

7.
The present study was undertaken to test the hypothesis of possible inhibitory effect of nimesulide (4-nitro-2-phenoxymethane-sulfoxide) on plasma TNF-alpha level. Male Sprague-Dawley rats were injected intraperitoneally (i.p.) with E. coli lipopolysaccharide (LPS; 1 mg/kg), which resulted in a dramatic increase in plasma TNF-alpha level peaked 60 min post injection (3890+/-280 pg/ml, compared to undetectable values in the control group). Nimesulide (30 mg/kg) injected i.p. 60 min prior to LPS, prevented LPS-induced elevation in plasma TNF-alpha. Nimesulide alone did not alter circulating levels of TNF-alpha. It appears that the anti-inflammatory properties of nimesulide may in part be attributed to its inhibitory effect on TNF-alpha production.  相似文献   

8.
The role of prostacyclin and thromboxane A2 in the pathogenesis of Bartter's syndrome was investigated by measurement of the urinary excretion of 6-keto-PGF1 alpha and thromboxane B2, respectively, in five patients. The prostaglandin metabolites were extracted from urine by a reproducible method and measured by specific radioimmunoassays. The patients with Bartter's syndrome excreted about four-times as much 6-keto-PGF1 alpha as the normal controls. In contrast, there was no significant difference in the urinary excretion of thromboxane B2 between the patients and the controls. In a second part of the study, three patients were treated with indomethacin (150 mg/day for four days), an inhibitor of prostaglandin synthesis. This regimen suppressed urinary excretion of 6-keto-PGF1 alpha by 43% and that of thromboxane B2 by 46%. It is suggested that the increase in prostacyclin production is responsible for both the hyperreninemia and and the other endocrine derangements as well as the hyporesponsiveness of blood pressure to intravenous infusion of vasopressors in patients with Bartter's syndrome.  相似文献   

9.
OBJECTIVE: The object of this study was to evaluate the time course of thromboxane B2 and prostaglandin E2 concentrations in cerebrospinal fluid after oral administration of dipyrone (INN, metamizole). METHODS: A single 1.0 gm oral dose of dipyrone was given to consenting patients undergoing elective diagnostic lumbar puncture 0.5, 1, 1.5, 2, 4, 6, 8, or 12 hours before the tap. RESULTS: For thromboxane B2 a time decrease in cerebrospinal fluid concentration was apparent. In contrast, for prostaglandin E2 cerebrospinal fluid levels no consistent trend was observed. CONCLUSIONS: A time-related decrease in cerebrospinal fluid thromboxane B2 level was noted in patients receiving dipyrone. Thirty minutes after dipyrone intake cerebrospinal fluid thromboxane B2 levels already tended to be lower than those seen in patients with neurologic diseases who were not receiving dipyrone. These results are consistent with the hypothesis that dipyrone acts in the central nervous system by inhibition of particular prostanoids.  相似文献   

10.
Prostaglandins (PGs) are important mediators regulating uterine functions during the reproductive process. The objective of this study was to examine, in myocytes from the circular and longitudinal layers of bovine myometrium, the relative levels of mRNA and proteins corresponding to the gene expression of key enzymes (phospholipase A2; prostaglandin G/H synthase-1 [PGHS-1]; prostaglandin G/H synthase-2 [PGHS-2]; prostaglandin I2 synthase) involved in PG biosynthesis. We examined the influence of estradiol-17beta and progesterone on the expression and activity of these enzymes. Treatment of myocytes with progesterone (P4: 10 nM, 24 h) in the absence or presence of estradiol-17beta (E2: 1 nM, 72 h) suppressed PG biosynthesis by approximately 60% in both myometrial layers. No significant effect was observed after E2 treatment. The combined effect of E2 and P4 on PG accumulation was correlated with the modulation of PGHS-2 protein and mRNA levels in the two myometrial layers without affecting other enzymes of the PG cascade. Selective or nonselective inhibition of PGHS activity with CGP 28238 (PGHS-2-specific; a product from Ciba-Geigy: 6-[2, 4-difluorophenoxy]-5-methyl-sulfonylamino-1-indanone) or indomethacin (PGHS-1 and -2) reduced prostacyclin accumulation (measured as 6-keto-PGF1alpha in the culture medium) in a dose-dependent manner in the two myometrial layers. A significant inhibitory effect was obtained at a low concentration of indomethacin (1 nM, p < 0.05) compared to CGP 28238 (10 nM, p < 0. 05). In both myometrial layers, the maximal effect of indomethacin and/or CGP 28238 on PG accumulation was observed at 100 nM and represented 85% and 65% inhibition, respectively. In the presence of phorbol 12-myristate (100 nM), CGP 28238 (10 nM) significantly suppressed PGHS-2 mRNA level by 44.80 +/- 7.67% (p < 0.01) and 27.83 +/- 7.62% (p < 0.05) in the longitudinal and circular layer, respectively. In contrast, indomethacin did not have any significant effect. These data constitute the first quantitative analysis of key enzymes involved in PG biosynthesis in separated myometrial layers. Furthermore, the results provide interesting information on the CGP 28238 drug modulating both enzymatic activity and mRNA expression of PGHS-2.  相似文献   

11.
Although theophylline has been used in the treatment of asthma for decades, it is not a first line choice any more. It is a well-known bronchodilator, but was recently discovered also to be an anti-inflammatory, immunomodulatory and bronchoprotective agent. Therefore we wanted to establish the role of theophylline on prostaglandin and leukotriene production, which plays a part in the pathogenesis of asthma. Theophylline was infused (bolus 5 mg/kg in 15 min and infusion 0.4 mg/kg/h for 1 h 45 min) into healthy volunteers. Thromboxane B2, prostaglandin E2 and leukotriene E4 were measured from the A23187-stimulated whole blood samples and stable metabolites of thromboxane A2; prostacyclin and leukotriene E4 were measured from urine. Theophylline increased prostaglandin E2 production and decreased leukotriene E4 production ex vivo in whole blood, thus increasing the prostanoid/leukotriene ratio. It did not change thromboxane B2 production stimulated by either spontaneous clotting or A23187 in the whole blood. Theophylline had hardly any effect on in vivo thromboxane, prostacyclin and leukotriene E4 production measured as urinary metabolites, 11-dehydro-thromboxane B2, 2,3-dinor-6-keto-prostaglandin F1alpha and leukotriene E4, respectively. Serum theophylline concentrations were at the lower level of normal therapeutic range during the infusion. The increase in PGE2 and the decrease in LTE4 synthesis ex vivo may offer a new explanation for the mode of antiasthmatic action of theophylline. It is notable that this phenomenon occurs at low serum theophylline concentrations. These results confirm the idea that theophylline has an anti-inflammatory and bronchoprotective action and support the use of theophylline as a therapeutic agent in asthmatic patients.  相似文献   

12.
The present report describes the interactions of human plasma proteins with the unstable endoperoxide, prostaglandin H2 and thromboxane A2, generated by incubation of platelets with prostaglandin H2 or arachidonic acid. It was found that both compounds reacted very rapidly with plasma proteins to form covalently bound derivatives. The major reacting plasma protein was human serum albumin. Depending on conditions, 20-40% of added prostaglandin H2 and 50-80% of generated thromboxane were bound to proteins. This reaction of both prostaglandin H2 and thromboxane A2 prevents their detection by classical analytical methods. The protein binding of thromboxane was more pH-sensitive than the binding of prostaglandin H2. The reactions cause reduced levels of both endoperoxide and thromboxane B2 in suspensions of washed platelets using human serum albumin as compared to buffer. It was also shown that the half-life of prostaglandin H2 was considerably reduced in the presence of albumin.  相似文献   

13.
PURPOSE: Both isoforms of cyclo-oxygenase, COX-1 and COX-2, are inhibited to varying degrees by all of the available nonsteroidal anti-inflammatory drugs (NSAIDs). Because inhibition of COX-1 by NSAIDs is linked to gastrointestinal ulcer formation, those drugs that selectively inhibit COX-2 may have less gastrointestinal toxicity. We measured the extent to which NSAIDs and other anti-inflammatory or analgesic drugs inhibit COX-1 and COX-2 in humans. SUBJECTS AND METHODS: Aliquots of whole blood from 16 healthy volunteers were incubated ex vivo with 25 antiinflammatory or analgesic drugs at six concentrations ranging from 0 (control) to 100 microM (n = 5 for each). Blood was assayed for serum-generated thromboxane B2 synthesis (COX-1 assay) and for lipopolysaccharide-stimulated prostaglandin E2 synthesis (COX-2 assay). In addition, gastric biopsies from the same volunteers were incubated with each drug ex vivo and mucosal prostaglandin E2 synthesis measured. RESULTS: Inhibitory potency and selectivity of NSAIDs for COX-1 and COX-2 activity in blood varied greatly. Some NSAIDs (eg, flurbiprofen, ketoprofen) were COX-1 selective, some (eg, ibuprofen, naproxen) were essentially nonselective, while others (eg, diclofenac, mefenamic acid) were COX-2 selective. Inhibitory effects of NSAIDs on gastric prostaglandin E2 synthesis correlated with COX-1 inhibitory potency in blood (P < 0.001) and with COX-1 selectivity (P < 0.01), but not with COX-2 inhibitory potency. Even COX-2 "selective" NSAIDs still had sufficient COX-1 activity to cause potent inhibitory effects on gastric prostaglandin E2 synthesis at concentrations achieved in vivo. CONCLUSION: No currently marketed NSAID, even those that are COX-2 selective, spare gastric COX activity at therapeutic concentrations. Thus, all NSAIDs should be used cautiously until safer agents are developed.  相似文献   

14.
15.
Phenylmethylsulphonyl fluoride, lactacystin (a selective inhibitor of the proteasome) and the peptide aldehydes carbobenzoxyleucylleucylnorvalinal and carbobenzoxyleucylleucylleucinal amplify the production of prostacyclin in rat liver cells incubated for 6 h with the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and the TPA-type tumour promoters teleocidin and aplysiatoxin. Such stimulation is not dependent upon the simultaneous presence of the inhibitor and TPA. Preincubation of the cells with TPA followed by addition of the inhibitor or preincubation with the inhibitor followed by addition of TPA results in amplified prostacyclin production. Phenylmethylsulphonyl fluoride, lactacystin, and carbobenzoxyleucylleucylnorvaline also enhance prostacyclin production after incubation with interleukin-1beta and transforming growth factor-alpha. The Ca2+ chelator ethyleneglycol-O,O'-bis(2-aminoethyl)-N,N,N',N'-tetraacetic acid inhibits the phenylmethylsulphonyl fluoride-TPA or lactacystin-TPA amplifications. Cells, treated with phenylmethylsulphonyl fluoride, TPA, interleukin-1beta, lactacystin or the peptide aldehydes exhibit increased prostaglandin endoperoxide G/H synthase activity. The increased activities as well as the constitutive prostaglandin endoperoxide G/H synthase activity are inhibited by a selective prostaglandin endoperoxide G/H synthase-2 inhibitor, 1-[2-(4-fluorophenyl)-cyclopenten-1-yl]-4-(methysulphonyl)-b enzene, with an IC50 of approximately 0.5 microM. These results demonstrate that the C-9 rat liver cells express prostaglandin endoperoxide G/H synthase-2 constitutively and express induced prostaglandin endoperoxide G/H synthase-2. Inhibition of proteolytic activity amplifies agonist-stimulated arachidonic acid metabolism in these cells.  相似文献   

16.
Nimesulide (CAS 51803-78-2) has been shown to exert marked anti-inflammatory effect in several in vivo models of inflammation. Since nimesulide is considered to be a selective inhibitor of COX-2, it has not been studied in detail in relation to its mechanistic effects on platelets, which express COX-1. This study was conducted to investigate the effects of nimesulide in platelet aggregation. We show that nimesulide (1-100 microM) inhibited platelet aggregation induced by adrenaline (20-200 microM). It also inhibited thromboxane A2 (TXA2) formation by platelets at low concentration (IC50; 1 microM). However, much lower concentrations of nimesulide (0.01-0.1 microM) potentiated the aggregatory response of subthreshold concentrations of adrenaline (0.2-2 microM). Such an effect was blocked by Ca2+-channel blockers, verapamil and diltiazem (IC50: 7 and 46 microM, respectively), nitric oxide donor, SNAP (IC50; 2 microM) and cinchonine (10 nM) but not by genistein (up to 10 microM). These results are indicative of the concentration-dependent dual effects of nimesulide on human platelet aggregation. The synergistic effect of low doses of nimesulide and adrenaline seems to be mediated through inhibition of multiple signalling pathways.  相似文献   

17.
Prostaglandins mediate many biological processes. Arachidonic acid, the common precursor for all prostaglandins, is released from membrane phospholipids by both secretory and cytoplasmic forms of phospholipase A2. Free arachidonate is converted to prostaglandin H2, the common precursor to all prostanoids, by prostaglandin synthase. Both mitogen-induced prostaglandin synthesis in fibroblasts and endotoxin-induced prostaglandin synthesis in macrophages require expression of the inducible prostaglandin synthase-2; arachidonate released in these contexts is unavailable to prostaglandin synthase-1 constitutively present in fibroblasts or macrophages. In contrast to the results for fibroblasts and macrophages, prostaglandin synthesis by activated mast cells is mediated by prostaglandin synthase-1. Mast cell activation also provokes release of secretory phospholipase A2 (sPLA2). We now demonstrate that sPLA2 released from activated mast cells can mobilize arachidonate from distal Swiss 3T3 cells. This arachidonate is then used by prostaglandin synthase-1 present in 3T3 cells for prostaglandin synthesis. We thus distinguish two pathways for prostaglandin synthesis: (i) an intracellular pathway by which arachidonate released following ligand stimulation is made available only to prostaglandin synthase-2, and (ii) a transcellular pathway by which sPLA2 of proximal cells mobilizes, in distal cells, arachidonate available to prostaglandin synthase-1. Molecular and pharmacologic approaches to modulating prostaglandin-mediated events will differ for these two pathways.  相似文献   

18.
The anti-inflammatory activity of drugs more selective for cyclooxgenase isoform inhibition (cyclooxygenase 1, cyclooxygenase 2), were compared in rat carrageenin-induced pleurisy. Suppression of inflammation by cyclooxygenase 2-selective inhibitors, NS-398 (N-[-2-cyclohexyloxy]-4-nitrophenyl methanesulphonamide) and nimesulide (4-nitro-2-phenoxy-methanesulfonanilide), and by piroxicam and aspirin, more selective for cyclooxygenase 1, was measured. Piroxicam and aspirin significantly inhibited inflammatory cell influx, exudate and prostaglandin E2 formation, 6 h after carrageenin injection. Cyclooxygenase 2 inhibitors had little effect on these parameters with NS-398 alone reducing prostaglandin E2 levels, but increasing levels of leukotriene B4. In contrast, at 3 h after carrageenin injection, cyclooxygenase 2 inhibitors significantly inhibited all inflammatory parameters however suppression with piroxicam and aspirin was greater, and more pronounced than at 6 h. NS-398 and nimesulide dosing did not reduce thromboxane B2 production from platelets isolated from rats with carrageenin-induced pleurisy, demonstrating that at the doses used, cyclooxygenase 2 inhibitors did not inhibit cyclooxygenase 1, as platelets contain only this isoform. Therefore, in the rat carrageenin-induced pleurisy, drugs more selective for the inhibition of cyclooxygenase 1 attenuate inflammation over a wider time frame than cyclooxygenase 2-selective drugs, suggesting a significant role for cyclooxygenase 1 in this model. Inhibition of cyclooxygenase 2 by NS-398 however, resulted in an increase in the potent chemoattractant leukotriene B4.  相似文献   

19.
Nimesulide is a newer non-steroidal anti-inflammatory drug (NSAID) with selective cyclo-oxygenase (COX)-2 blocking property and has demonstrated a potent analgesic and anti-inflammatory activity on oral and rectal administration. However, the Cmax through both these routes is reached only after 3 h of administration. Dose-dependent gastrointestinal side effects also limit the concentration of drug that can be achieved at the site of inflammation when administered through these routes. The present study was conducted to evaluate the antinociception induced by a new gel formulation of nimesulide when applied on the skin. Efficacy of topical nimesulide gel 1% (w/w) was studied on mice in the acetic-acid-induced writhing, tail flick latency (TFL) test and formalin-induced pain models. The antinociceptive effect of nimesulide was compared to diclofenac gel (1% w/w). Both the drugs induced dose-dependent analgesia with peak effect seen between 90 and 120 min after treatment. Greater antinociceptive effect (expressed as percent maximum possible effect) was seen in the writhing test than in the TFL test, indicating the peripheral action of both drugs. Nimesulide evidenced significant protection in the first phase of formalin-induced pain indicating modulation of peripheral nociceptors unlike other conventional NSAIDs. This suggests that COX-2 may be a primary contributor to afferent evoked increase in prostanoid-mediated changes in pain processing. Antinociception seen following drug application on the skin was lower than that seen on intraperitoneal administration, indicating localised action following topical application. The findings of the present study suggest that the transgel formulation of nimesulide provides significant analgesic activity when applied topically.  相似文献   

20.
The pathophysiology of cold injury is still controversial. An inflammatory process has been implicated as the underlying mechanism and certain anti-inflammatory substances such as ibuprofen and acetylsalicylic acid have been used in the clinical treatment of frostbite injury. It has been postulated that the progressive ischemic necrosis is secondary to excessive thromboxane A2 production, which upsets the normal balance between prostacyclin (prostaglandin I2) and thromboxane A2. It was aimed to clarify the pathophysiology of cold injury in this study. Twenty-one New Zealand White rabbits, each weighing 1.2 to 2.9 kg, were divided into control (n = 10) and frostbitten (n = 11) groups the randomly. The rabbit ears in the frostbitten group were subjected to cold injury, and the levels of thromboxane A2 (as thromboxane B2) and of prostaglandin I2 (as 6-keto-prostaglandin F1alpha) and the number of inflammatory cells (polymorphonuclear leukocytes and mast cells) were measured in normal and frostbitten skin of rabbit ears. The levels of 6-keto prostaglandin F1alpha and thromboxane B2, the stable metabolites of prostaglandin I2 and thromboxane A2, respectively, were increased in a statistically significant way (p < 0.002) by frostbite injury; however, thromboxane B2 increased more than 6-keto prostaglandin F1alpha. Polymorphonuclear leukocytes and mast cells, absent in normal skin, were present in the frostbitten skin. There was a statistically significant (p < 0.01) correlation between the time a rabbit ear was maintained at below -10 degrees C and skin survival and between the weights of rabbits and skin survival (p < 0.024). All these findings suggest that inflammation is involved in frostbite injury; a decrease in prostaglandin I2/thromboxane A2 ratio could be one of the factors leading to necrosis; the bigger the animal, the better its ability to counter frostbite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号