首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

2.
The existence of ryanodine-sensitive Ca2+ stores and their role in the Ca2+ entry mechanism were examined in the rat submandibular gland acinar cells, using the microfluorimetry of intracellular Ca2+ concentration ([Ca2+]i). In the presence of thapsigargin, a Ca(2+)-ATPase inhibitor of inositol (1, 4, 5) triphosphate (InsP3)-sensitive Ca2+ stores, caffeine caused an increase in [Ca2+]i, which was inhibited by treatment with ryanodine (a ligand to the Ca(2+)-induced Ca2+ release channels). In the cells treated with ryanodine, 1 mM Ca2+ addition to a Ca(2+)-free solution caused a marked increase in [Ca2+]i, which was eliminated by application of Ni2+ or SK & F 96365, suggesting a Ca2+ entry triggered by ryanodine. The maximal change in the net increase in [Ca2+]i caused by the ryanodine-coupled Ca2+ entry, was 104.0 +/- 16.0 nM, which intense was caused by 10 microM ryanodine. Emptying the InsP3-sensitive stores by treatment with thapsigargin also caused Ca2+ entry, which maximally changed [Ca2+]i by 349.6 +/- 15.1 nM. Ten mumol/liter ryanodine was confirmed to cause a release of 45Ca2+ from the parotidic microsomal fraction enriched in endopalsmic reticulum. We propose that ryanodine-sensitive Ca2+ stores are present in rat submandibular gland acinar cells. We further propose that release of Ca2+ from the ryanodine-sensitive stores, which means eventually depletion of the ryanodine-sensitive Ca2+ stores, can activate the Ca2+ entry. The ability for Ca2+ entry coupled with the ryanodine-sensitive Ca2+ stores seems to be about 30% of the ability for Ca2+ entry coupled with the thapsigargin-sensitive Ca2+ stores.  相似文献   

3.
The protease thrombin seems to play a central role in events following neural injury, whereby the enzyme can act, in concert with other molecules as a hormone or as a growth factor. In cells derived from the nervous system, thrombin induces changes in morphology and proliferation. The signalling mechanisms involved in these thrombin-activated processes are still unclear. In the present study we investigated Ca2+ signals in fura-2 loaded rat astrocytes in primary culture. Brief stimulation of astrocytes with thrombin induced a dose-dependent transient elevation of [Ca2+]i, best fitted by a double-sigmoidal curve giving two EC50 values of 3 pM and 150 pM. Continuous superfusion of cells with thrombin induced Ca2+ responses with three different types of kinetics. In 48% of the cells tested a single transient rise superimposed with fast fluctuations of [Ca2+]i was seen. The following complex long-term changes of [Ca2+]i, dependent on the presence of the agonist thrombin, were observed: i) a biphasic [Ca2+]i elevation, characterized by an initial peak followed by a sustained plateau phase (in 43% of the cells) and ii) oscillations of [Ca2+]i (in 9% of the cells). The observed Ca2+ responses were inhibited by the phospholipase C (PLC) inhibitor U-73122 and the thrombin inhibitor protease nexin-1/glia-derived nexin. The synthetic thrombin receptor activating peptide could mimic the thrombin-induced changes of [Ca2+]i. In astrocytes in Ca2+-free medium, thrombin induced a sharp single transient Ca2+ rise, without superimposed fluctuations. After depletion of intracellular Ca2+ stores with thapsigargin the Ca2+ response to thrombin was diminished or completely suppressed indicating that thrombin induces the release of Ca2+ from intracellular stores. During long-term Ca2+ responses, omission of extracellular Ca2+ resulted in a reversible interruption of the signal. In conclusion our results demonstrate that thrombin by activation of its plasma membrane receptor induces through activation of PLC different types of Ca2+ responses. The complex Ca2+ signals are generated by an interplay of InsP3-mediated Ca2+ release from intracellular stores and Ca2+ entry across the plasma membrane.  相似文献   

4.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

5.
The existence of G protein-dependent and -independent mechanisms activated by sodium fluoride was examined in muscle cells isolated separately from the circular and longitudinal layers of guinea pig intestine. The cells were transiently permeabilized by incubation with Trans. Port Reagent in the presence or absence of GDP beta S (100 microM) and then re-sealed. In the absence of GDP beta S, NaF (1 mM) induced contraction and caused an increase in [Ca2+]i, IP3 and diacylglycerol levels and in protein kinase C (PKC) activity in both cell types. In the presence of GDP beta S, the increases in IP3, DAG and PKC were abolished whereas contraction and the increase in [Ca2+]i were partly inhibited. Residual contraction and [Ca2+]i were abolished by the Ca2+ channel blocker, methoxyverapamil. We conclude that contraction and Ca2+ mobilization induced by NaF is mediated by G protein activation as well as by a G protein-independent mechanism involving activation of plasmalemmal Ca2+ channels.  相似文献   

6.
PURPOSE: To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS: Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS: Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION: BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.  相似文献   

7.
Modulatory effects of the activation of either protein kinase C (PKC) by phorbol 12,13-dibutyrate (PDBu) or protein kinase A (PKA) by forskolin on stimulant-evoked secretory processes in the perfused rat adrenal medulla were studied. PDBu or forskolin was applied during repetitive stimulation (30 s each at 10-min intervals) with nicotine, bradykinin, muscarine or histamine, and changes in [Ca2+]i (fura-2 microfluorometry) and catecholamine secretions (electrochemical detection) were simultaneously measured. PDBu markedly potentiated the nicotine-evoked secretion without altering the [Ca2+]i response. PDBu partially inhibited the muscarine-evoked secretion and almost completely blocked the histamine-evoked secretion, concomitantly with extensive suppressions of the [Ca2+]i responses to these stimulants. The bradykinin-evoked secretion was enhanced by PDBu despite a slight attenuation of the [Ca2+]i response. PDBu reduced bradykinin-induced intracellular Ca2+ release in a Ca2+-free medium but enhanced the secretion associated with the released Ca2+. These results suggest that PDBu-activated PKC modulates secretory processes at, at least, two different stages. An early-stage modulation may downregulate receptor/G protein systems, which accounts for the inhibitory effect of PDBu on the muscarine- and histamine-evoked responses. A late-stage modulation may generally promote Ca2+-triggered exocytosis after elevation of [Ca2+]i, which explains the potentiation of the nicotine-evoked secretion by PDBu. The late-stage modulation may counteract the early-stage modulation in bradykinin-stimulated cells. Forskolin potentiated the secretory responses to the four secretagogues without increasing the [Ca2+]i responses. PKA may modulate secretory process at a step(s) distal to the rise in [Ca2+]i as is the case with the late-stage modulation by PKC.  相似文献   

8.
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca(2+)-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of -60 mV, the muscarine-induced [Ca2+]i rise, especially its sustained phase, decreased in magnitude. Intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca(2+)-channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

9.
The effects of adrenomedullin (AM), a hypotensive peptide, were investigated in cultured human oligodendroglial cell line KG-1C. Human AM increased the intracellular Ca2+ concentration ([Ca2+]i) at concentrations greater than 10(-7) M. Human calcitonin gene-related peptide (CGRP), a peptide structurally related to AM, also increased [Ca2+]i with a potency similar to that of AM. AM increased [Ca2+]i in the absence of extracellular Ca2+. Further, AM increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) level in a concentration-dependent manner similar to that of AM-induced [Ca2+]i, suggesting that AM-induced elevation of [Ca2+]i is due to Ca2+ release from Ins(1,4,5)P3-sensitive stores. AM (10(-9) to 10(-6) M) increased cAMP in a concentration-dependent manner. Forskolin also increased cAMP, but did not mimic the [Ca2+]i-raising effect of AM. These findings suggest that functional AM receptors are present in oligodendroglial KG-1C cells and that AM increases [Ca2+]i through a mechanism independent of cAMP.  相似文献   

10.
Lead characteristically perturbs processes linked to the calcium messenger system. This study was undertaken to determine the role of PKC in the Pb2+ induced rise of [Ca2+]i. [Ca2+]i was measured using the divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy) ethane N, N,N',N'-tetraacetic acid (5F-BAPTA) and 19F-NMR in the osteoblast cell line, ROS 17/2.8. Treatment of cells with Pb2+ at 1 and 5 microM produced a rise in [Ca2+]i from a basal level of 125 nM to 170 nM and 230 nM, respectively, while treatment with phorbol 12-myristate 13-acetate (PMA) (10 microM), an activator of PKC, produced a rise in [Ca2+]i to 210 nM. Pretreatment with calphostin C, a potent and highly selective inhibitor of PKC activation failed to produce a change in basal [Ca2+]i and prevented any rise in [Ca2+]i in response to Pb2+. To determine whether Pb2+ acts directly on PKC, we measured the Pb2(+)-dependent activation of phosphatidylserine/diolein-dependent incorporation of 32P from ATP into histone and endogenous TCA precipitable proteins in the 100,000 X g supernatant from homogenized ROS 17/2.8 cells. The free concentrations of Pb2+ and Ca2+ were set using 5F-BAPTA; and [Ca2+] and [Pb2+] in the PKC reaction mixtures were confirmed by 19F-NMR. We found that Pb2+ activates PKC in the range of 10(-11)-10(-7) M, with an activation constant of 1.1 X 10(-10) M, whereas Ca2+ activates PKC in the range from 10(-8) to 10(-3) M, with an activation constant of 3.6 X 10(-7) M. These data suggest that Pb2+ activates PKC in ROS 17/2.8 cells and that Pb2+ activation of PKC mediates the documented rise in [Ca2+]i and, perhaps, other toxic effects of Pb2+.  相似文献   

11.
The temporal changes in cytosolic free Ca2+ ([Ca2+]i), Ca2+-dependent membrane currents (Im), and gap junctional current (Ij) elicited by acetylcholine (ACh) were measured in rat pancreatic acinar cells using digital imaging and dual perforated patch-clamp recording. ACh (50 nM-5 microM) increased [Ca2+]i and evoked Im currents without altering Ij in 19 of 37 acinar cell pairs. Although [Ca2+]i rose asynchronously in cells comprising a cluster, the delay of the [Ca2+]i responses decreased with increasing ACh concentrations. Perfusion of inositol 1,4,5-trisphosphate (IP3) into one cell of a cluster resulted in [Ca2+]i responses in neighboring cells that were not necessarily in direct contact with the stimulated one. This suggests that extensive coupling between acinar cells provides a pathway for cell-to-cell diffusion of Ca2+-releasing signals. Strikingly, maximal (1-5 microM) ACh concentrations reduced Ij by 69 +/- 15% (n = 9) in 25% of the cell pairs subjected to dual patch-clamping. This decrease occurred shortly after the Im peak and was prevented by incubating acinar cells in a Ca2+-free medium, suggesting that uncoupling was subsequent to the initiation of the Ca2+-mobilizing responses. Depletion of Ca2+-sequestering stores by thapsigargin resulted in a reduction of intercellular communication similar to that observed with ACh. In addition, ACh-induced uncoupling was prevented by blocking nitric oxide production with L-nitro-arginine and restored by exposing acinar cells to dibutyryl cGMP. The results suggest that ACh-induced uncoupling and capacitative Ca2+ entry are regulated concurrently. Closure of gap junction channels may occur to functionally isolate nearby cells differing in their intrinsic sensitivity to ACh and thereby to allow for sustained activity of groups of secreting cells.  相似文献   

12.
A high-speed imaging technique was used to investigate the effects of inhibitors and activators of protein kinase C (PKC) on the [Ca2+]i transients and contraction of fura-2 loaded rat ventricular cardiac myocytes. The amplitude of the [Ca2+]i transient was reduced following treatment with 100 nM phorbol 12,13-dibutyrate (PDBu), whereas the PKC inhibitors staurosporine (0.5 microM) and calphostin C (10 microM) increased [Ca2+]i transient amplitude, elevated basal [Ca2+]i and slowed the decay of the [Ca2+]i transient. These changes were paralleled by similar alterations in the rate and extent of cell shortening. The activity of nitrendipine-sensitive Ca2+ channels was monitored indirectly as the rate of Mn2+ quench of cytosolic fura-2 in electrically-paced cells. PDBu reduced Mn2+ influx by six-fold, whereas staurosporine and calphostin C increased the influx rate by eight-fold and seven-fold over basal quench, respectively. The caffeine releasable Ca2+ pool was reduced in the presence of PDBu and increased transiently in presence of staurosporine. The effects of PKC activation and inhibition on sarcoplasmic reticulum Ca2+ content may be secondary to alterations of sarcolemmal Ca2+ influx. However, the PKC inhibitors also decreased the rate of sarcoplasmic reticulum Ca2+ uptake in permeabilized myocytes, suggesting that a direct effect of PKC on the sarcoplasmic reticulum may contribute to the prolongation of the [Ca2+]i transient under these conditions. The present work demonstrates that basal PKC activity has a potent depressant effect, mediated primarily through inhibition of sarcolemmal Ca2+ influx, which may play a key role in setting the basal tone of cardiac muscle.  相似文献   

13.
Hydrogen peroxide (H2O2) in nanomolar concentrations (20-100 nM) stimulated the growth of small (diameter 100 +/- 30 microm) multicellular prostate cancer spheroids and increased c-fos expression. H2O2 transiently raised [Ca2+]i by Ca2+ release from intracellular stores as the transient persisted in low (10 nM) Ca2+ solution but was abolished when intracellular Ca2+ stores were depleted by thapsigargin or chelation of [Ca2+]i with BAPTA. The H2O2-induced [Ca2+]i transient was furthermore inhibited by the P2-purinoreceptor antagonists suramin and basilen blue, indicating that H2O2 may act via purinergic receptor stimulation. Treatment of spheroids with either suramin, basilen blue or BAPTA inhibited the H2O2-induced growth stimulation and c-fos expression, indicating that the H2O2-mediated growth stimulation of multicellular spheroids is mediated via a Ca2+-dependent pathway.  相似文献   

14.
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.  相似文献   

15.
The present study elucidated the precise mechanism of 5-hydroxytryptamine (5-HT)-induced increase of intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells isolated from rat aortic media. [Ca2+]i was measured using fluorescent Ca2+ indicator, fura-2. 5-HT caused a dose-dependent increase in [Ca2+]i, which was completely inhibited by ketanserin. alpha-Methyl-5-HT had an equipotent effect to 5-HT. Diltiazem at 10 microM partially suppressed the 5-HT-induced increase in [Ca2+]i. 5-HT also augmented Mn2+ influx, when monitored by Mn2+ quenching of fura-2 fluorescence. When extracellular Ca2+ (1.3 mM) was removed, a decrease in resting level and a small, transient increase in [Ca2+]i were observed. 5-HT stimulation also induced an increase in the production of inositol triphosphate. 5-HT-induced increase in [Ca2+]i was significantly, but partially inhibited by staurosporin and H-7. Phorbol 12-myristate 13-acetate induced an increase in [Ca2+]i, which was abolished by removal of extracellular Ca2+. 5-HT-induced increase in [Ca2+]i was not affected by the pretreatment with pertussis toxin (PTX), and was not accompanied by a change in cyclic AMP content. These results suggest that, in cultured rat aortic smooth muscle cells, 5-HT increases [Ca2+]i via 5-HT2 receptor subtype by inducing influx of extracellular Ca2+ partially through L-type voltage-dependent Ca2+ channel, as well as by mobilizing Ca2+ from its intracellular stores. Activation of protein kinase C may be positively involved in the regulatory mechanism of Ca2+ influx, but PTX-sensitive G protein and cyclic AMP seem to be not involved.  相似文献   

16.
1. Fura-2 imaging was used to measure the effects of glutamate on caffeine-sensitive Ca2+ stores in neurons of the avian cochlear nucleus, n. magnocellularis (NM). 2. On average, 100-mM caffeine stimulated a 250-nM increase in intracellular calcium ion concentration {[Ca2+]i} in Ca(2+)-free media; 1-mM glutamate significantly attenuated caffeine-stimulated Ca2+ responses. 3. The metabotropic glutamate receptor agonist, ACPD, also inhibited the caffeine-stimulated rise in [Ca2+]i. 4. Glutamate has an important role in regulating Ca2+ stores in NM neurons. Glutamate-deprivation (viz. cochlear removal) results in a rise in [Ca2+]i that may, in part, be the result of release from Ca2+ stores. We hypothesize that Ca(2+)-induced Ca2+ release stores (CICRs) may be involved in deprivation-induced cell death.  相似文献   

17.
Glial cells have a role in maintaining the function of neural cells. This study was undertaken to clarify the effects of baicalin and baicalein, flavonoids isolated from an important medicinal plant Scutellariae Radix (the root of Scutellaria baicalensis Georgi), on glial cell function using C6 rat glioma cells. Baicalin and baicalein caused concentration-dependent inhibition of a histamine-induced increase in intracellular Ca2+ concentrations ([Ca2+]i). The potency of baicalein was significantly greater than that of baicalin. The noradrenaline- and carbachol-induced increase in [Ca2+]i was also inhibited by baicalein and both drugs inhibited histamine-induced accumulation of total [3H]inositol phosphates, consistent with their inhibition of the increase in [Ca2+]i. These results suggest that baicalin and baicalein inhibit [Ca2+]i elevation by reducing phospholipase C activity. The inhibitory effects of baicalin and baicalein on [Ca2+]i elevation might be important in the interpretation of their pharmacological action on glial cells, such as inhibition of Ca2(+)-required enzyme phospholipase A2.  相似文献   

18.
By using the Ca(2+)-sensitive indictor Fura-2/AM, the cytosolic Ca2+ levels [Ca2+]i were measured in type 1 astrocytes in rat cortical astroglial primary cultures, after stimulation with GABA, muscimol (GABAA agonist), or baclofen (GABAB agonist). We report the first evidence that stimulation of both GABAA and GABAB receptors evokes Ca2+ transients in type I astrocytes. Two types of Ca2+ responses were seen: the single-phase curve, which was the most common, and the biphasic, which consisted of an initial rise that persisted at the maximal or submaximal level. Both types of Ca2+ responses appeared with some latency. The responses were obtained in astrocytes grown for 12-16 days in culture and the response frequencies for all three agonists were 18% of the total number of examined cells. However, when the astrocytes were grown in a mixed astroglial/neuronal culture the response frequencies for all three agonists increased to 35% of the total number of examined cells. In some cells, the responses after GABA stimulation were blocked to baseline levels after exposure to bicuculline (GABAA antagonist). In other cells, bicuculline only slightly reduced the GABA-evoked responses, and the addition of phaclofen (GABAB antagonist) did not potentiate this partial inhibition. However, the muscimol-evoked rises in [Ca2+]i were completely inhibited after exposure to bicuculline, while the responses after baclofen could only be partly blocked by phaclofen. GABA evoked rises in [Ca2+]i which alternatively were inhibited (mostly) or persisted in Ca(2+)-free buffer. The rises in [Ca2+]i persisted, but were reduced, in Ca(2+)-free buffer after stimulation with muscimol, but were inhibited after baclofen stimulation. The GABA uptake blockers guvacine, 4,5,6,7-tetrahydroisoxazolo(4,5-c)pyridin-3-ol and nipecotic acid were also able to reduce the GABA-evoked rises in [Ca2+]i. However, the L-type Ca2+ channel antagonist nifedipine failed to influence on the GABA-evoked Ca2+ transients. The results suggest that type 1 astrocytes in primary culture express GABA receptors which can elevate [Ca2+]i directly or indirectly via Ca2+ channels and/or via release from internal Ca2+ stores. The results also suggest that GABA can have intracellular Ca(2+)-mobilizing sites since the GABA-evoked responses were reduced after incubation with GABA uptake blockers.  相似文献   

19.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

20.
Changes in cytosolic Ca2+ concentration ([Ca2+]i) in cultured human mucosal microvascular endothelial cells (HMMECs) from nasal inferior turbinate were measured using a fluorescent Ca(2+)-sensitive dye, fura-2, and photometric fluorescence microscopy. Histamine caused a transient increase in intracellular free Ca2+ in cell populations and in individual cells, followed by a decrease to a sustained elevation. Histamine (100 microM) elevated [Ca2+]i in HMMECs up to 563 +/- 20 nM from a resting level of 60 +/- 45 nM (means +/- SD, n = 31). Promethazine (a histamine H1 receptor antagonist) inhibited [Ca2+]i increase during histamine stimulation, whereas cimetidine (a H2 receptor antagonist) and thioperamide (a H3 receptor antagonist) showed no inhibition. These results suggest that the histamine increase [Ca2+]i in HMMECs induces both a Ca2+ release from stores and a Ca2+ influx through activation of the H1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号