首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO–diesel blended fuels. The effects of the CSO–diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO–diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO–diesel blended fuels than the pure diesel fuel whereas the NOx emissions were increased remarkably when the engine was fuelled with the 50% CSO–diesel blended fuel.  相似文献   

2.
The effects of different ethanol–diesel blended fuels on the performance and emissions of diesel engines have been evaluated experimentally and compared in this paper. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI) diesel engine using 0% (neat diesel fuel), 5% (E5–D), 10% (E10–D), 15% (E15–D), and 20% (E20–D) ethanol–diesel blended fuels. With the same rated power for different blended fuels and pure diesel fuel, the engine performance parameters (including power, torque, fuel consumption, and exhaust temperature) and exhaust emissions [Bosch smoke number, CO, NOx, total hydrocarbon (THC)] were measured. The results indicate that: the brake specific fuel consumption and brake thermal efficiency increased with an increase of ethanol contents in the blended fuel at overall operating conditions; smoke emissions decreased with ethanol–diesel blended fuel, especially with E10–D and E15–D. CO and NOx emissions reduced for ethanol–diesel blends, but THC increased significantly when compared to neat diesel fuel.  相似文献   

3.
Biofuel (biodiesel, bioethanol) is considered one of the most promising alternative fuels to petrol fuels. The objective of the work is to study the characteristics of the particle size distribution, the reaction characteristics of nanoparticles on the catalyst, and the exhaust emission characteristics when a common rail direct injection (CRDI) diesel engine is run on biofuel-blended diesel fuels. In this study, the engine performance, emission characteristics, and particle size distribution of a CRDI diesel engine that was equipped with a warm-up catalytic converters (WCC) or a catalyzed particulate filter (CPF) were examined in an ECE (Economic Commission Europe) R49 test and a European stationary cycle (ESC) test. The engine performance under a biofuel-blended diesel fuel was similar to that under D100 fuel, and the high fuel consumption was due to the lowered calorific value that ensued from mixing with biofuels. The use of a biodiesel–diesel blend fuel reduced the total hydrocarbon (THC) and carbon monoxide (CO) emissions but increased nitrogen oxide (NOx) emissions due to the increased oxygen content in the fuel. The smoke emission was reduced by 50% with the use of the bioethanol–diesel blend. Emission conversion efficiencies in the WCC and CPF under biofuel-blended diesel fuels were similar to those under D100 fuel. The use of biofuel-blended diesel fuel reduced the total number of particles emitted from the engine; however, the use of biodiesel–diesel blends resulted in more emissions of particles that were smaller than 50 nm, when compared with the use of D100. The use of a mixed fuel of biodiesel and bioethanol (BD15E5) was much more effective for the reduction of the particle number and particle mass, when compared to the use of BD20 fuel.  相似文献   

4.
In this study, three different fuels named G100 (pure gasoline), E20 (volume 20% ethanol and 80% gasoline blend) and ES20 (20% sodium borohydride added ethanol solution and 80% gasoline) were used to test in a gasoline engine. First of all, G100 fuel, E20 and ES20 blended fuels, respectively, were tested in a gasoline engine and the effects of fuels on engine performance and exhaust emissions were investigated experimentally. Experiments were carried out at full load and at five different engine speeds ranging from 1400 to 3000 rpm, and engine performance and exhaust emission values were determined for each test fuel. When the test results of the engine operated with E20 and ES20 blended fuels are compared with the test results of the engine operated with gasoline; engine torque of E20 blended fuel increased by 1.87% compared to pure gasoline, while engine torque of ES20 blended fuel decreased by 1.64%. However, the engine power of E20 and ES20 blended fuels decreased by 2.02% and 5.10%, respectively, compared to the power of pure gasoline engine, while their specific fuel consumption increased by 5.02% and 6.57%, respectively, compared to pure gasoline fueled engine. On the other hand, CO and HC emissions of the engine operated with E20 and ES20 blended fuels decreased compared to the pure gasoline engine, while CO2 and NOx emissions increased.  相似文献   

5.
The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil–diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters.  相似文献   

6.
Hanbey Hazar   《Applied Energy》2010,87(1):134-140
An important alternative for diesel fuel is methyl ester made of vegetable oils. Direct use these fuels without modification in diesel engines causes some damages on the parts of the engines and also, the viscosity of the methyl ester fuels is quite higher than that of diesel fuel (No. 2D) and their calorific value is lower. Therefore it is not possible to obtain more benefit. Coating combustion chamber parts with a ceramic material seems an effective solution for improving performance of these lower-quality fuels compared with No. 2D and also exhaust emission values. Since it allows to use higher combustion temperatures. In the present study, surfaces of cylinder head, piston, exhaust and inlet valve of a four-stroke, direct injection, single cylinder diesel engine were coated with molybdenum (Mo) by plasma spray method. Thus, thermal barrier characteristic was brought to these parts. Variances in performance and emission values of cotton methyl ester and 2D fuel mixtures were studied in the ceramic coated and uncoated engines under the same running conditions. Performance (up to 2.2–2.3% for engine power, up to 3.5–5.6% for specific fuel consumption) and emission values (up to 17–22% for CO, up to 5.2–10% for smoke) of the test fuels were improved in the coated engine compared with the uncoated engine. However, because the coated engine ran at higher temperatures compared with the uncoated engine, an increase (up to 6.5–7.4%) was seen in NOx emission in cases of all test fuels.  相似文献   

7.
《能源学会志》2020,93(4):1624-1633
Depletion of fossil fuels and stringent emission norms focus attention to discover an evitable source of alternative fuel in order to attribute a significant compensation on conventional fuels. Besides, waste management policies encourage the valorization of different wastes for the production of alternative fuels in order to reduce the challenges of waste management. In this context, pyrolysis has become an emerging trend to convert different wastes into alternate fuel and suitable to be used as a substitute fuel for CI engines. The current investigation provides a sustainable and feasible solution for waste plastic management by widening the gap between global plastic production and plastic waste generation. It investigates the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst. Engine load tests have been conducted taking waste plastic oil and subsequently a blend of waste plastic oil by 10%, 20%, and 30% in volume proportions with diesel as fuel. The performance of the test engine in terms of brake thermal efficiency is found marginally higher and brake specific fuel consumption comparatively lowest for 20% WPO-diesel blend than pure diesel. The NOx and HC emission is found lower under low load condition and became higher by increasing the load as compared to diesel. Fuel exergy was significantly increasing after blending of WPO with pure diesel, but exergetic efficiency of the blended fuels followed the reverse trend. However, increase in load of the engine improved the exergetic efficiency. The 20% WPO–diesel blended fuel is found suitable to be used as an alternative fuel for diesel engine.  相似文献   

8.
Oxygen containing additives are usually used to improve gasoline’s performance and reduce exhaust emissions. In this study, the effect of oxygen containing additives on gasoline blended fuels on exhaust emissions was investigated for different engine speeds in a single cylinder, four-stroke, spark-ignition engine. The results indicate that CO and HC exhaust emissions are lower with the use of ethanol–gasoline and DMC–gasoline blended fuels as compared to the use of unleaded gasoline. On the other hand, the effect of ethanol–gasoline and DMC–gasoline blended fuels on NOX exhaust emission is insignificant. Using oxygen containing additives can increase fuel consumption as a result of the heating value of the blended fuels being lower than that of unleaded gasoline.  相似文献   

9.
Hwanam Kim  Byungchul Choi   《Renewable Energy》2008,33(10):2222-2228
In this study, the exhaust gas from a common-rail direct injection diesel engine was investigated both upstream and downstream warm-up catalytic converters (WCC). Three different types of ultra-low sulfur fuels (ethanol–diesel blend, ethanol–diesel blend with cetane improver and pure diesel) were tested in this study. The objective of the work was to study the engine performance and the formation of THC (total hydro carbon), CO (carbon monoxide), NOx (nitrogen oxides), smoke and PM (particulate matters) when using these fuels. THC and CO emissions of the ethanol–diesel blend fuels were slightly increased, and about 50–80% mean conversion efficiencies of THC and CO on catalysts were achieved in the ECE R49 13-mode cycle. Smoke was decreased by more than 42% in the entire ECE 13-mode cycles. From the measurement of scanning mobility particle sizer (SMPS) for the particle size range of 10–385 nm, the total number and total mass of the PM of the ethanol–diesel blend fuels were decreased by about 11.7–15% and 19.2–26.9%, respectively.  相似文献   

10.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

11.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

12.
In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics.  相似文献   

13.
The aim of this study is to obtain alternative fuels with hydrogen-containing (NaBH4) and oxygen-containing (ethanol, methanol) fuel additives and to test these fuels in a gasoline engine. For this purpose, each of the NaBH4 added ethanol and methanol solutions was added to pure gasoline at a volume of 10% and mixed fuels named SE10 and SM10 were obtained, respectively. The obtained SE10 and SM10 mixed fuels were tested in a spark ignition engine and the performance and emission effects of the fuels were compared with the pure gasoline fueled engine test data. When the test results of the mixture fuel engine were compared with the test results of the engine running with pure gasoline, the torque of the SE10 fuel engine decreased compared to the pure gasoline engine, while the torque of the SM10 blended engine increased. In addition, while the exhaust gas temperatures of both blended fuels decreased, their specific fuel consumption and thermal efficiency increased. On the other hand, adding NaBH4 doped ethanol and methanol solutions to pure gasoline resulted in better combustion, reductions in CO emissions of SE10 and SM10 blended fuels by 31.04% and 53.7%, but CO2 emissions increased by 11.20% and 19.51% respectively. In addition, NOx emissions of SE10 and SM10 blended fuels decreased by 15.17% and 8.73%, respectively.  相似文献   

14.
The aim of this study is to determine the availability of pomegranate seed oil biodiesel (POB) as an alternative fuel in diesel engines and evaluate engine performance and emission characteristics of pure hydrogen enriched POB using diesel engine. For this purpose, the intake manifold of the test engine was modified and hydrogen enriched intake air was supplied throughout the experiments. Physical properties of POB and its blend with diesel fuel were also determined. The results showed that measured physical properties of POB are comparable with diesel fuel. According to engine performance experiments, although POB utilization has slight undesirable effects on some engine performance parameters such as brake power output and specific fuel consumption, it can be used as alternative fuel in diesel engines, by this way CO emission can be improved. Finally, hydrogen enrichment experiments indicated that pure hydrogen addition causes a slight improvement in both engine performance and exhaust emissions.  相似文献   

15.
The search for alternative sources of energy has been driven by the increased cost and depletion of supply of fossil fuels. The alternatives are mainly vegetable oils. Putranjiva roxburghii, a non-edible vegetable oil can be used in diesel engine for its fuel properties which are comparable with diesel. Blends (10%, 20%, 30%, and 40% v/v) of pure Putranjiva oil and diesel are used in Ricardo Variable Compression Diesel Engine to study the performance and emission characteristics at various brake power. Putranjiva oil blends yield better performance at 45° CA bTDC injection timing in comparison to 40° CA bTDC timing for diesel. Maximum 30% blend of Putranjiva oil with diesel can be used as an alternative fuel in diesel engine for it differs very little from diesel in performance and is better than diesel with regard to emissions.  相似文献   

16.
Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%/20%; and 50%/50% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%/2.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition-accelerator additive for diesel fuel.  相似文献   

17.
In this article, the status of fat and oil derived diesel fuels with respect to fuel properties, engine performance, and emissions is reviewed. The fuels considered are primarily the methyl esters of fatty acids derived from a variety of vegetable oils and animal fats, and referred to as biodiesel. The major obstacle to widespread use of biodiesel is the high cost relative to petroleum. Economics of biodiesel production are discussed, and it is concluded that the price of the feedstock fat or oil is the major factor determining biodiesel price.Biodiesel is completely miscible with petroleum diesel fuel, and is generally tested as a blend. The use of biodiesel in neat or blended form has no effect on the energy based engine fuel economy. The lubricity of these fuels is superior to conventional diesel, and this property is imparted to blends at levels above 20 vol%. Emissions of PM can be reduced dramatically through use of biodiesel in engines that are not high lube oil emitters. Emissions of NOx increase significantly for both neat and blended fuels in both two- and four-stroke engines. The increase may be lower in newer, lower NOx emitting four-strokes, but additional data are needed to confirm this conclusion. A discussion of available data on unregulated air toxins is presented, and it is concluded that definitive studies have yet to be performed in this area. A detailed discussion of important biodiesel properties and recommendations for future research is presented. Among the most important recommendations is the need for all future studies to employ biodiesel of well-known composition and purity, and to report detailed analyses. The purity levels necessary for achieving adequate engine endurance, compatibility with coatings and elastomers, cold flow properties, stability, and emissions performance must be better defined.  相似文献   

18.
The nitrogen oxide (NOx) release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification. In the present paper, different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation. The water droplet size in the emulsion, polydisperisty index, and the stability of prepared fuel was examined, experimentally. Afterwards, the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels. The effect of water content (in the range of 5%–10% by volume), surfactant content (in the range of 0.5%–2% by volume), and hydrophilic-lipophilic balance (HLB) (in the range of 5–8) was examined using Box-Behnken design (BBD) as a subset of response surface methodology (RSM). Considering multi-objective optimization, the best formulation for the emulsion fuel was found to be 5% water, 2% surfactant, and HLB of 6.8. A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics. A considerable decrease in the nitrogen oxide emission (–18.24%) was observed for the best emulsion fuel compared to neat diesel fuel.  相似文献   

19.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

20.
Diesel engine emissions consist of several harmful gaseous species, some of which are regulated by stringent emission norms, while many others are not. These unregulated emission species are responsible for adverse environmental impact and serious health hazards upon prolonged exposure. In this study, a four-cylinder, 1.4 l, compression ignition (CI) engine was used for characterization of unregulated gaseous exhaust emissions measured at 2500 rpm at varying engine loads (0, 25, 50, 75 and 100%). The test fuels investigated were Karanja biodiesel blended with diesel (KB5, KB20), methanol blended with diesel (M5) and baseline mineral diesel. Fourier transform infrared (FTIR) emission analyzer was used to measure unregulated emission species and raw exhaust gas emission analyzer was used to measure regulated emission species in exhaust. Results show an increasing trend for some of the unregulated species from blends of biodiesel such as formaldehyde, acetaldehyde, ethanol, n-butane however methane reduced upon using these oxygenated fuel blends except methanol, compared to baseline mineral diesel. Nevertheless, no significant changes were observed for sulfur dioxide, iso-butane, n-octane, n-pentane, formic acid, benzene, acetylene and ethylene upon using biodiesel and methanol blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号