首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bran of hulless barley (Hordeum vulgare L.) from Tibet was investigated. This paper reports on the physicochemical characteristics, lipid classes and fatty acids of the oil from the bran. The petroleum (60–90 °C) extract of hulless barley bran was found to be 8.1%. The investigated physiochemical parameters included density at 40 °C (0.96 g/cm3), refractive index at 40 °C (1.41), melting point (30.12 °C), acid value (11.6 mg KOH/g), peroxide value (19.41 μg/g), saponification value (337.62 mg KOH/g), iodine value (113.51 mg iodine/g) and unsaponifiable matter (4.5% of total lipids).The amount of neutral lipids in the crude oil was the highest (94.55% of total lipids), followed by glycolipids (4.20% of the total lipid) and phospholipids (1.25% of the total lipid). Linoleic acid (75.08% of total fatty acids) followed by palmitic acid (20.58% of total fatty acids), were the two major fatty acids in the oil. The results show that the oil from the hulless barley bran could be a good source of valuable essential fatty acids.  相似文献   

2.
Coriander (Coriandrum sativum L.) seeds were harvested from the region of Korba (North-East Tunisia) in order to characterize their fatty acids, phytosterols, tocopherols and tocotrienols (tocols) profiles. Nine fatty acids, with petroselinic acid accounting for 76.6% of the total fatty acids, followed by linoleic, oleic and palmitic acids, accounting for 13.0, 5.4 and 3.4%, respectively, of the total fatty acids were identified. Neutral lipids (NLs) were mainly composed of triacylglycerols (98.4%). Polar lipids were mainly composed of phosphatidylcholine as the major phospholipid (PL) subclass, whereas digalactosyldiacylglycerol was the major galactolipid (GL). Total sterols content was estimated to be 36.93 mg/g oil. Stigmasterol accounted for 29.5% of the total sterols. Other representative sterols were β-sitosterol, Δ7-stigmasterol and Δ5, 24-stigmastadienol, which accounted for 24.8, 16.3 and 9.2%, respectively. Gamma-tocotrienol was the predominant tocol at 238.40 μg/g seed oil. This was equivalent to 72.8% of the total tocols followed by γ-tocopherol (8.06%) and α-tocopherol (7.6%).  相似文献   

3.
Niger seed samples were collected from different regions in Ethiopia for determination of oil content, and of fatty acid, tocopherol and sterol composition in the seed oil by gas-liquid chromatography and high-performance liquid chromatography methods. There was a large variation in oil content, ranging from 29 to 39%. More than 70% of the fatty acids was linoleic acid (18∶2) in all samples analyzed. The other predominant fatty acids were palmitic (16∶0), stearic (18∶0) and oleic (19∶1) at a range of 6 to 11% each. Total polar lipids recovered after preparative thin-layer chromatography comprised a small fraction of the total lipids. They had higher 16∶0 and lower 18∶2 contents than the triacylglycerols.α-Tocopherol was the predominant tocopherol in all samples, 94–96% of the total amounting to 630–800 μg/g oil. More than 40% of the total sterols wasβ-sitosterol,ca. 2000μg/g oil. The other major sterols were campesterol and stigmasterol, ranging from 11 to 14%. The Δ5- and Δ7-avenasterols were in the range of 4 to 7%. From the samples studied, no conclusion could be drawn regarding the influence of altitude or location on oil content, tocopherol and/or sterol contents. The results of the present study on niger seed oil are discussed in comparison with known data for common oils from Compositae,viz, safflower and sunflower.  相似文献   

4.
The physicochemical properties of seed and seed oil obtained from the native black mulberry (Morus nigra L.) were investigated in 2008 and 2009. The results showed that the seed consisted of 27.5–33% crude oil, 20.2–22.5% crude protein, 3.5–6% ash, 42.4–46.6% carbohydrate and 112.2–152.0 mg total phenolics/100 g. Twenty different fatty acids were determined, with the percentages varying from 0.02% myristic acid (C14:0) to 78.7% linoleic acid (C18:2). According to the GC analysis of fatty acid methyl esters, linoleic acid (C18:2), followed by palmitic acid (C16:0), oleic acid (C18:1) and stearic acid (C18:0) were the major fatty acids, which together comprised approximately 97% of the total identified fatty acids. High C18:2 content (average 73.7%) proved that the black mulberry seed oil is a good source of the essential fatty acid, linoleic acid. Linolenic acid (C18:3) was also found in a relatively lower amount (0.3–0.5%). The α-tocopherol content was found to be between 0.17 and 0.20 mg in 100 g seed oil. The main sterols in the mulberry seed oil were β-sitosterol, Δ5-avenasterol, Δ5, 23-stigmastadienol, clerosterol, sitosterol and Δ5, 24-stigmastadienol. The present study stated that the native black mulberry seed oil can be used as a nutritional dietary substance and has great usage potential.  相似文献   

5.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

6.
The fatty acid composition of the seed oil of 19 wild legume species from southern Spain was analyzed by gas chromatography. The main seed oil fatty acids ranged from C14:0 to C20:0. Among unsaturated fatty acids, the most abundant were linoleic, oleic and linolenic acids, except for Lathyrus angulatus, L. aphaca, L. clymenum, L. sphaericus and L. nigricans where C18:3 contents were higher than C18:1 contents. Palmitic acid was the most abundant saturated acid in studied species, ranging from 11.6% in Lathyrus sativus to 19.3% in Lens nigricans. All studied species showed higher amounts of total unsaturated fatty acids than saturated ones. Among studied species, the ω6/ω3 ratio was variable, ranging from 2.0% in L. nigricans to 13.8% in L. sativus, there being eight species in which the ω6/ω3 ratio was below 5. The fatty acids observed in these plants supports the use of these plants as a source of important dietary lipids.  相似文献   

7.
Lipids of canola seedcoats (Brassica napus L. andB. rapa L.) were prepared by surface washing and by complete extraction of seed coats with toluene. The major fatty acyl-containing triacylglycerols, wax esters and free fatty acids were separated by thin-layer chromatography prior to transesterification and analysis by gas-liquid chromatography. The proportion of C18∶1n−7 to C18∶1n−9 was higher in the extracted lipids than in the surface-washed lipids for all three classes.  相似文献   

8.
Neutral lipids, glycolipids, and phospholipids (1.3%, 0.25%, and 0.10% of seed weight) were isolated from the total lipids (chloroform-methanol) of finger millet seeds(Eleusine coracana), and four sterol-containing lipids further isolated from neutral and glycolipids by preparative column and thin layer chromatography. On seed weight, these comprised: free sterols (S) 0.091%, sterol esters (SE) 0.013%, sterol glycosides (SG) 0.025%, acyl sterol glycosides (ASG) 0.020%, and total 0.149%. The major fatty acids, totaling 85-90%, were the same in both esterified sterols, but the proportions varied: 16:0, 18:1, and 18:2 comprising 24, 49, and 17% in SE (calculated iodine value 75) and 43, 36, and 7% in ASG (calculated iodine value 46). All four sterol lipids contained 80-84% of β-sitosterol, the remainder being stigmasterol. The only sugar in SG and ASG was D-glucose. It is deduced that the major representative species are: SE, β-sitosterol oleate/palmitate; SG, β-D-glucopyranosyl-(l → 3)-β-sitosterol; and ASG, 6-0-palmitoyl-β-D-glucopyranosyl-(l → 3)-β-sitosterol.  相似文献   

9.
The physicochemical properties of crude Nigella seed (Nigella sativa L.) oil which was extracted using Soxhlet, Modified Bligh–Dyer and Hexane extraction methods were determined. The effect of different extraction methods which includes different parameters, such as temperature, time and solvent on the extraction yield and the physicochemical properties were investigated. The experimental results showed that temperature, different solvents and extraction time had the most significant effect on the yield of the Nigella oil extracts. The fatty acid (FA) compositions of Nigella seed oil were further analyzed by gas chromatography to compare the extraction methods. The C16:0, C18:1 and C18:2 have been identified to be the dominant fatty acids in the Nigella seed oils. However, the main triacylglycerol (TAG) was LLL followed by OLL and PLL. The FA and TAG content showed that the composition of the Nigella seed oil extracted by different methods was mostly similar, whereas relative concentration of the identified compounds were apparently different according to the extraction methods. The melting and crystallization temperatures of the oil extracted by Soxhlet were −2.54 and −55.76 °C, respectively. The general characteristics of the Nigella seed oil obtained by different extraction methods were further compared. Where the Soxhlet extraction method was considered to be the optimum process for extracting Nigella seed oil with a higher quality with respect to the other two processes.  相似文献   

10.
Anna Johansson 《Lipids》1979,14(3):285-291
The composition and proportion of free sterols and sterol esters in crude sunflower and poppy seed oils were determined, using preparative thin layer chromatography followed by gas chromatography with cholesterol as an internal standard. Free sterols and sterol esters were also isolated in a liquid fraction obtained by low temperature crystallization (−80 C) of the oils and enriched with minor lipid classes. This enrichment procedure provided a liquid fraction suitable for studies of minor components in the oils. However, selectivity towards sterol esters was observed since sterols esterified to very long chain fatty acids (C20–C24) were preferentially retained in the precipitate. The proportions of free and esterified sterols were found to be 0.34 and 0.28%, respectively, in the sunflower oil, whereas the corresponding figures for poppy seed oil were 0.33% and 0.05%. Sunflower oil was characterized by a relatively high percentage of Δ7-sterols, preferentially obtained in the esterified fraction, and by very long chain saturated fatty acids of sterol esters. The sterols in poppy seed oil were composed almost entirely of campesterol, stigmasterol, sitosterol and Δ5-avenasterol, although their percentage distributions were remarkably different in the free and esterified fraction.  相似文献   

11.
Regional distribution of tocopherols and fatty acids within soybean seeds   总被引:4,自引:0,他引:4  
Seed coat, axis, and sections of cotyledons in three soybean cultivars were analyzed by high-performance liquid chromatography for tocopherols, and by gas-liquid chromatography for acyl lipids. Tocopherols were predominantly detected in axis, followed by cotyledons and seed coat. With a few exceptions, dominant components were γ- and δ-tocopherols, with much smaller amounts of α- and β-tocopherols. However, α-tocopherol was higher (P<0.05) for the Mikawajima cultivar than for Okuhara and Tsurunoko in all tissues. Triacylglycerols (TAG) were the major fraction of total lipids, representing 70% in axis and coat and 94% in cotyledons. A small difference (P<0.05) occurred in fatty acid composition of TAG when comparing seed coat to the axis. The fatty acid composition of phosphatidylinositol (PI) differed (P<0.05) from phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in each tissue. Principally, the percentage of palmitic acid was higher, especially in axis and coat. In PE and PC, linoleic was greater, followed by palmitic, in all samples except for seed coat tissue in Mikawajima. The percentages of palmitic acid in both phospholipids were significant higher in the seed coat tissue from this cultivar than in cotyledon or axis of the other varieties. These results suggest that the differences in soybean cultivars could be appreciable, based on the distribution of tocopherols and fatty acids in each component part within soybean seeds.  相似文献   

12.
C. -E. Høy  G. Hølmer 《Lipids》1979,14(8):727-733
The incorporation of dietary isomeric fatty acids into the membranes of liver mitochondria was investigated. Three groups of rats were fed diets containing 3% sunflower seed oil plus 15%, 20%, or 25% partially hydrogenated arachis oil. A fourth group was fed 25% partially hydrogenated arachis oil, but no sunflower seed oil. All diets were given for 3, 6, or 10 weeks. After 10 weeks, the content oftrans fatty acids in the lipids of the mitochondrial membranes was 15–19% of the total fatty acids. The composition of thetrans- and thecis-octadecenoic acids in the lipids of the mitochondrial membranes was similar for all groups supplemented with sunflower seed oil (SO), irrespective of time and dietary level of partially hydrogenated arachis oil (HAO). Thecis 18∶1 (n−8), which was a major isomer of the partially hydrogenated arachis oil, was almost excluded from the mitochondrial fatty acids. Likewise, the content oftrans 18∶1 (n−8) was considerably lower in the mitochondrial lipids than in the diet. On the contrary, the content oftrans 18∶1 (n−6) was higher in the mitochondrial lipids than in the diet. In the group fed without sunflower seed oil, isomers of linoleic acid and arachidonic acid were observed in the lipids of mitochondrial membranes. Presented in part at the ISF Congress, Marseille, September 1976.  相似文献   

13.
Lipid compositions of two non-conventional oilseeds (Irvingia gabonensis and Treculia africana) were studied. Total lipids were extracted by the Folch method and phospholipids were isolated by solid phase extraction. Fatty acid compositions of total lipids and phospholipids were determined by gas chromatography. Phospholipid classes and tocopherols were quantified by HPLC. The major fatty acids in I. gabonensis seed total lipids were myristic (41.4–48.9 %) and lauric (39.8–46.8 %) while those in T. africana seed were linoleic (29.1–31.4 %) and oleic (22.9–25.9 %). The principal fatty acid at the sn-2 position of I. gabonensis seed triacylglycerols was myristic (49.5 %) while that of T. africana was linoleic (50.6 %). Phospholipid content of crude T. africana seed oil was 3.3 % and that of I. gabonensis was 0.1–0.3 %. The composition and distribution of saturated fatty acids in I. gabonensis seed lipids suggest that it may contribute to cardiovascular disease risk factors among the Igbo people in Nigeria that use the seed as food ingredient.  相似文献   

14.
Polyunsaturated fatty acids (PUFA) are important ingredients of human diet because of their prominent role in the function of human brain, eye and kidney. α‐Linolenic acid (ALA), a C18, n‐3 PUFA is a precursor of long chain PUFA in humans. Commercial lipases of Candida rugosa, Pseudomonas cepacea, Pseudomonas fluorescens, and Rhizomucor miehei were used for hydrolysis of flax seed oil. Reversed phase high performance liquid chromatography followed by gas chromatography showed that the purified oil contained 12 triacylglycerols (TAGs) with differences in fatty acid compositions. Flax seed oil TAGs contained α‐linolenic acid (50%) as a major fatty acid while palmitic, oleic, linoleic made up rest of the portion. Among the four commercial lipases C. rugosa has preference for ALA, and that ALA was enriched in free fatty acids. C. rugosa lipase mediated hydrolysis of the TAGs resulted in a fatty acid mixture that was enriched in α‐linolenic to about 72% yield that could be further enriched to 80% yield by selective removal of saturated fatty acids by urea complexation. Such purified ALA can be used for preparation of ALA‐enriched glycerides. Practical applications : This methodology allows purifying ALA from fatty acid mixture obtained from flax seed oil by urea complexation.  相似文献   

15.
The heartwood or root of Dalbergia odorifera T. Chen is an important traditional medicine in Asia. The aim of the present study was to evaluate the physicochemical properties, chemical composition and antioxidant activity of Dalbergia odorifera T. Chen seed oil. Oil, protein, carbohydrate, moisture, ash and total phenolic contents were found to be 12.96, 26.86, 42.58, 13.70, 3.90 and 5.55%, respectively. Free fatty acids, iodine number, peroxide value, saponification number and unsaponifiable matter were 1.66%, 106.53 g/100 g, 5.07 meq O2/Kg, 196.78 mg KOH/g and 1.70%, respectively. The oil showed high absorbance in the UV-B and UV-C ranges with potential for use as a broad spectrum UV protectant. The major fatty acids were linoleic acid (60.03%), oleic acid (17.48%) and palmitic acid (16.72%). The total tocopherol, total phenolics and β-carotene were 511.9, 351.1 and 62.2 mg/kg oil, respectively. In addition, the methanol extract of seed oil showed significant in vitro antioxidant activity in four assays including DPPH radical scavenging activity, reducing power, linoleic acid peroxidation inhibition and chelating activity. This study suggests that Dalbergia odorifera T. Chen seed oil has the potential to be used in new products in the functional food, cosmetic or pharmaceutical industries.  相似文献   

16.
Lipid composition of perilla seed   总被引:3,自引:0,他引:3  
The composition of lipids and oil characteristics from perilla [Perilla frutescens (L.) Britt.] seed cultivars are reported. Total lipid contents of the five perilla seed cultivars ranged from 38.6 to 47.8% on a dry weight basis. The lipids consisted of 91.2–93.9% neutral lipids, 3.9–5.8% glycolipids and 2.0–3.0% phospholipids. Neutral lipids consisted mostly of triacylglycerols (88.1–91.0%) and small amounts of sterol esters, hydrocarbons, free fatty acids, free sterols and partial glycerides. Among the glycolipids, esterified sterylglycoside (48.9–53.2%) and sterylglycoside (22.1–25.4%) were the most abundant, while monogalactosyldiacylglycerol and digalactosyldiacylglycerol were present as minor components. Of the phospholipids, phosphatidylethanolamine (50.4–57.1%) and phosphatidylcholines (17.6–20.6%) were the major components, and phosphatidic acid, lysophosphatidylcholine, phosphatidylserine and phosphatidylinositol were present in small quantities. The major fatty acids of the perilla oil were linolenic (61.1–64.0%), linoleic (14.3–17.0%) and oleic acids (13.2–14.9%). Some of the physicochemical characteristics and the tocopherol composition of perilla oil were determined.  相似文献   

17.
Two unusual lipid classes were detected by thin-layer chromatography in the neutral lipids derived from goat cauda-epididymal sperm plasma membrane. The lipids were identified as wax esters and 1-O-alkyl-2,3-diacylglycerols based on chromatographic properties, identity of their hydrolysis products, and infrared/1H nuclear magnetic resonance spectral evidence. The membrane containedca. 3 and 5 μg/mg protein of wax esters and alkyldiacylglycerols, respectively. The relative proportions of wax esters and alkyldiacylglycerols in the total neutral lipids were 1.5% and 2.4%, respectively. The lipids contained fatty acids with chain lengths of C14 to C22. The major fatty acids of the wax esters were 14∶0, 16∶0, 16∶1ω7, 18∶0 and 18∶1ω9. The fatty acids in alkyldiacylglycerol were 16∶0, 18∶0, 22∶5ω3 and 22∶6ω3. Alkyldiacylglycerol was particularly rich in docosahexaenoic acid 22∶6ω3) representing 30% of the total fatty acids. The alcohols of wax ester were all saturated with C20–C29 carbon chains. The deacylated products derived from alkyldiacylglycerols were identified as hexadecyl, octadecyl and octadec-9′-enyl glycerol ethers.  相似文献   

18.
Caesalpinia bonducella is an oilseed that is indigenous to Pakistan. The hexane-extracted oil content from the seed kernel was 17.3 ± 1.0% DM (dry matter). The proximate analysis of C. bonducella seed estimated protein, fiber and ash contents to be 20.8 ± 1.4, 5.3 ± 1.0 and 4.6 ± 0.8%, respectively. Trace metals were determined comparable to commonly consumed legume seeds. α-Tocopherol was the predominant tocopherol ranging from 345.10 to 460.21 mg/kg of oil, followed by γ- and δ-tocopherol. The major sterols were β-sitosterol, stigmasterol, campesterol, Δ5-avenasterol, Δ7-stigmastenol and Δ7 avenasterol. The kernel oil was found to contain a high level of linoleic acid (72.7 ± 1.0%) followed by oleic, stearic and palmitic acids. The high percentage of linoleic acid revealed that this oil is a potential source for the manufacture of cosmetics, paints, varnishes, soaps, liquid soaps and other products including biodiesel. These investigations suggest that C. bonducella oil is potentially an important dietary source of essential fatty acids and protein which could be employed for edible and commercial applications in various industries of Pakistan.  相似文献   

19.
Besides some usual fatty acids, the seed oil ofSabastiana brasiliensis (Euphorbiaceae) contains up to 39% (estimated by ultraviolet spectroscopy) of α-parinaric acid (cis, trans, trans, cis-9, 11, 13, 15-octadecatetraenoic acid). The fatty acids were analyzed by gas chromatography and gas chromatography/mass spectrometry as their methyl esters. The structure of α-parinaric acid was proven by a combination of chemical and spectroscopic methods, conducted with the crude oil, the methyl ester mixture, and the isolated fatty acid methyl ester. Complete assignment of the1H and13C nuclear magnetic resonance (NMR) shifts of α-parinaric acid was carried out by two-dimensional NMR experiments Presented in part at the 21st world Congress and Exhibition of the International Society for Fat Research (ISF), October 1–6, 1995, The Hague, The Netherlands.  相似文献   

20.
Gorlic, chaulmoogric and hydnocarpic fatty acids, specific to the seed oil of the genus Hydnocarpus sp. (Flacourtiaceae), are determined only with difficulty by gas chromatography. These fatty acids were isolated in their methyl ester form by a combination of different chromatographic techniques (thin-layer chromatography/Ag+ and high-pressure liquid chromatography). The proton and carbon nuclear magnetic resonance analysis of these fatty acid methyl esters showed some characteristic signals of the cyclopentenyl ring. The presence of these signals in the proton and/or carbon nuclear magnetic resonance spectrum of an oil thus will allow us to confirm the presence of these cyclopentenyl fatty acids in lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号